Experiments in Fluids

, 54:1582 | Cite as

Generation of isolated vortices in a rotating fluid by means of an electromagnetic method

  • R. C. Cruz Gómez
  • L. Zavala Sansón
  • M. A. Pinilla
Research Article


We present a method for generating isolated monopolar vortices in rotating tank experiments. The technique is based on the electromagnetic forcing commonly used in nonrotating systems, which consists of setting a vertical magnetic field—parallel to the rotation axis—and a horizontal density current in an electrolytic fluid layer. The magnetic field is provided by a permanent magnet placed underneath the central point of the fluid container, while a radial density current is established between a central electrode and a number of opposite-sign electrodes at the periphery. The resulting azimuthal Lorentz force creates a monopolar vortex. It is shown that the generated vortices are axisymmetric and isolated, that is, their total circulation is zero. Cyclonic or anticyclonic vortices can be generated by choosing the appropriate polarity of the electrodes or the orientation of the magnet. The strength of the vortices is regulated by the magnitude of the density current and by the forcing time. This method allows the systematic study of the unstable evolution of isolated vortices, which is characterized by the formation of multipolar vortices.


Vortex Vorticity Cyclone Particle Image Velocimetry Central Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The experiments were performed at the rotating table of the Laboratorio de Dinámica de Fluidos Geofísicos of the Instituto de Astronomía y Meteorología, Universidad de Guadalajara, México. The authors gratefully acknowledge the help of Roberto Toscano with the experimental work and of two anonymous reviewers for their valuable comments on the original manuscript.


  1. Afanasyev YD, Wells J (2005) Quasi-two-dimensional turbulence on the polar beta-plane: laboratory experiments. Geophys Astrophys Fluid Dyn 99:1–17MathSciNetzbMATHCrossRefGoogle Scholar
  2. Beckers M, van Heijst GJF (1998) The observation of a triangular vortex in a rotating fluid. Fluid Dyn Res 22:265–279zbMATHCrossRefGoogle Scholar
  3. Bondarenko NF, Gak EZ, Gak MZ (2002) Application of MHD effects in electrolytes for modeling vortex processes in natural phenomena and in solving engineering-physical problems. J Eng Phys Thermophys 75:1234–1247CrossRefGoogle Scholar
  4. Carnevale GF, Kloosterziel RC (1994) Emergence and evolution of triangular vortices. J Fluid Mech 341:127–163MathSciNetCrossRefGoogle Scholar
  5. Carnevale GF, Kloosterziel RC, Orlandi P, van Sommeren DDJA (2011) Predicting the aftermath of vortex breakup in rotating flow. J Fluid Mech 669:90–119MathSciNetzbMATHCrossRefGoogle Scholar
  6. Carton XJ, Flierl GR, Polvani LM (1989) The generation of tripoles from unstable axisymmetric isolated vortex structures. Europhys Lett 9:339–344CrossRefGoogle Scholar
  7. Clercx HJH, van Heijst GJF, Zoeteweij ML (2003) Quasi-two-dimensional turbulence in shallow fluid layers: the role of bottom friction and fluid layer depth. Phys Rev E 67(066303):1–9Google Scholar
  8. Duran-Matute M, Di Nitto G, Trieling RR, Kamp LPJ, van Heijst GJF (2012). The break-up of Ekman theory in a flow subjected to background rotation and driven by a non-conservative body force. Phys Fluids 24:116602CrossRefGoogle Scholar
  9. Espa E, Carnevale GF, Cenedese A, Mariani M (2008) Quasi-two-dimensional decaying turbulence subject to the β-effect. J Turbul 9:N36CrossRefGoogle Scholar
  10. Espa E, Cenedese A, Mariani M, Carnevale GF (2009) Quasi-two-dimensional flow on the polar β-plane: laboratory experiments. J Mar Sys 77:502–510CrossRefGoogle Scholar
  11. Figueroa A, Demiaux F, Cuevas S, Ramos E (2009) Electrically driven vortices in a weak dipolar magnetic field in a shallow electrolytic layer. J Fluid Mech 641:245–261zbMATHCrossRefGoogle Scholar
  12. Flierl GR (1988) On the instability of geostrophic vortices. J Fluid Mech 197:349–388MathSciNetzbMATHCrossRefGoogle Scholar
  13. Hopfinger EJ, van Heijst GJF (1993) Vortices in rotating fluids. Annu Rev Fluid Mech 25:241–289CrossRefGoogle Scholar
  14. Kloosterziel RC, van Heijst GJF (1991) An experimental study of unstable barotropic vortices in a rotating fluid. J Fluid Mech 223:1–24CrossRefGoogle Scholar
  15. Kloosterziel RC, van Heijst GJF (1992) The evolution of stable barotropic vortices in a rotating free-surface fluid. J Fluid Mech 239:607–629CrossRefGoogle Scholar
  16. Kloosterziel RC, Carnevale GF (1999) On the evolution and saturation of instabilities of two-dimensional isolated circular vortices. J Fluid Mech 388:217–257MathSciNetzbMATHCrossRefGoogle Scholar
  17. Orlandi P, Carnevale GF (1999) Evolution of isolated vortices in a rotating fluid of finite depth. J Fluid Mech 381:239–269MathSciNetzbMATHCrossRefGoogle Scholar
  18. Sommeria J (1986) Experimental study of the two-dimensional inverse energy cascade in a square box. J Fluid Mech 170:139–168CrossRefGoogle Scholar
  19. Sommeria J (1988) Electrically driven vortices in a strong magnetic field. J Fluid Mech 189:553–569CrossRefGoogle Scholar
  20. Tabeling P, Burkhart S, Cardoso O, Willaime H (1991) Experimental study of freely decaying two-dimensional turbulence. Phys Rev Lett 67:3772–3775CrossRefGoogle Scholar
  21. Trieling RR, van Heijst GJF, Kizner Z (2010) Laboratory experiments on multipolar vortices in a rotating fluid. Phys Fluids 22:094104CrossRefGoogle Scholar
  22. van Heijst GJF, Kloosterziel RC (1989) Tripolar vortices in a rotating fluid. Nature 338:569–571CrossRefGoogle Scholar
  23. van Heijst GJF, Clercx HJH (2009) Laboratory modeling of geophysical vortices. Annu Rev Fluid Mech 41:143–164CrossRefGoogle Scholar
  24. van Heijst GJF, Kloosterziel RC, McWilliams CW (1991) Laboratory experiments on the tripolar vortex in a rotating fluid. J Fluid Mech 225:301–331CrossRefGoogle Scholar
  25. Zavala Sansón L, van Heijst GJF (2000) Nonlinear Ekman effects in rotating barotropic flows. J Fluid Mech 412: 75–91MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. C. Cruz Gómez
    • 1
  • L. Zavala Sansón
    • 2
  • M. A. Pinilla
    • 2
  1. 1.Departamento de Física, Instituto de Astronomía y MeteorologíaUniversidad de GuadalajaraGuadalajaraMéxico
  2. 2.Departamento de Oceanografía FísicaCICESEEnsenadaMéxico

Personalised recommendations