Experiments in Fluids

, 54:1531 | Cite as

Aeroacoustic source analysis using time-resolved PIV in a free jet

  • David E. S. BreakeyEmail author
  • John A. Fitzpatrick
  • Craig Meskell
Research Article
Part of the following topical collections:
  1. Application of Laser Techniques to Fluid Mechanics 2012


Time-resolved particle image velocimetry (TR-PIV) has become a valuable tool for spatio-temporally resolved flow measurements. Current camera and laser technology has advanced such that time-domain events leading to sound generation can now be resolved over a reasonable spatial extent. This paper reports on the application of TR-PIV for the analysis of aeroacoustic sources in a free jet using the direct correlation between in-flow velocity fluctuations on the jet center-line and near-field pressure fluctuations. This correlation is considered both in the time domain and in the frequency domain (coherence), and the effect of TR-PIV errors on these estimates is considered by comparison to hot-wire anemometer measurements. In addition, a recently developed wavelet filtering technique is used to separate the acoustic and hydrodynamic components of recorded near-field pressure signals, enabling a gain in the signal-to-noise ratio. The results show that TR-PIV can recover the same time-domain correlation available from hot-wire and traditional PIV measurements, but that the frequency-domain estimates are corrupted by error, particularly at high frequencies. This result negates the principal benefit of using TR-PIV over PIV (the availability of coherence estimates). Despite this result, an analysis of the correlation signature gives evidence that large-scale, convecting, wave-like structures are associated with sound production, a result consistent with observations by many recent investigators. The analysis shows that in the presence of such large-scale structures, noise source localization based on the traditional correlation technique is ambiguous.


Particle Image Velocimetry Sound Source Particle Image Velocimetry Measurement Cylinder Case Tandem Cylinder 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Science Foundation Ireland under contract number 09/RFP/ENM2469. The first author was also supported by a Natural Sciences and Engineering Research Council of Canada postgraduate scholarship.

Supplementary material

348_2013_1531_MOESM1_ESM.txt (4 kb)
TXT (4.12 KB)


  1. Arndt RE, Long DF, Glauser MN (1997) The proper orthogonal decomposition of pressure fluctuations surrounding a turbulent jet. J Fluid Mech 340:1–33. doi: 10.1017/S0022112097005089 CrossRefGoogle Scholar
  2. Bogey C, Bailly C (2007) An analysis of the correlations between the turbulent flow and the sound pressure fields of subsonic jets. J Fluid Mech 583:71–97. doi: 10.1017/S002211200700612X zbMATHCrossRefGoogle Scholar
  3. Bridges J, Wernet M (2007) Effect of temperature on jet velocity spectra. Technical Memorandum NASA/TM—2007-214993; AIAA-2007-3628, NASA Glenn Research Center, Cleveland, OhioGoogle Scholar
  4. Cavalieri AVG, Jordan P, Agarwal A, Gervais Y (2011) Jittering wave-packet models for subsonic jet noise. J Sound Vib 330(1819):4474–4492. doi: 10.1016/j.jsv.2011.04.007 CrossRefGoogle Scholar
  5. Chatellier L, Fitzpatrick J (2005) Spatio-temporal correlation analysis of turbulent flows using global and single-point measurements. Exp Fluids 38(5):563–575. doi: 10.1007/s00348-004-0910-3 CrossRefGoogle Scholar
  6. Elsinga GE, Scarano F, Wieneke B, Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947. doi: 10.1007/s00348-006-0212-z CrossRefGoogle Scholar
  7. Fitzpatrick JA, Rice HJ (1988) Simplified partial coherence functions for multiple input/output analysis. J Sound Vib 122(1):171–174. doi: 10.1016/S0022-460X(88)80013-0 MathSciNetCrossRefGoogle Scholar
  8. Grizzi S, Camussi R (2012) Wavelet analysis of near-field pressure fluctuations generated by a subsonic jet. J Fluid Mech 698:93–124. doi: 10.1017/jfm.2012.64 zbMATHCrossRefGoogle Scholar
  9. Haigermoser C (2009) Application of an acoustic analogy to PIV data from rectangular cavity flows. Exp Fluids 47(1):145–157. doi: 10.1007/s00348-009-0642-5 CrossRefGoogle Scholar
  10. Henning A, Ehrenfried K (2008) On the accuracy of one-point and two-point statistics measured via high-speed PIV. In: Proceedings of the 14th international symposium on the application of laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  11. Henning A, Kaepernick K, Ehrenfried K, Koop L, Dillmann A (2008) Investigation of aeroacoustic noise generation by simultaneous particle image velocimetry and microphone measurements. Exp Fluids 45(6):1073–1085. doi: 10.1007/s00348-008-0528-y CrossRefGoogle Scholar
  12. Henning A, Koop L, Ehrenfried K (2010a) Causality correlation in aeroacoustic experiments by means of simultaneous PIV and microphone-array. In: Proceedings of the 3rd Berlin beamforming conference. Berlin, GermanyGoogle Scholar
  13. Henning A, Schröder A, Krebs I, Agocs J (2010b) Aeroacoustic investigations on a cold jet by means of simultaneous PIV and microphone measurements. In: Proceedings of the 15th international symposium on applications of laser techniques to fluid mechanicsGoogle Scholar
  14. Hinsch KD (1995) Three-dimensional particle velocimetry. Meas Sci Technol 6:742–753. doi: 10.1088/0957-0233/6/6/012 CrossRefGoogle Scholar
  15. Jordan P, Gervais Y (2007) Subsonic jet aeroacoustics: associating experiment, modeling and simulation. Exp Fluids 44(1):1–21. doi: 10.1007/s00348-007-0395-y CrossRefGoogle Scholar
  16. Kennedy J (2010) The influence of chevrons on the turbulent characteristics of jets. PhD thesis, University of Dublin, Trinity CollegeGoogle Scholar
  17. Kennedy J, Fitzpatrick J (2010) The effect of chevrons on the turbulence characteristics of jets. In: Proceedings of the 16th AIAA/CEAS aeroacoustics conference. Stockholm, SwedenGoogle Scholar
  18. Kerhervé F, Fitzpatrick J (2010) Measurement and analysis of the turbulent length scales in jet flows. Exp Fluids. doi: 10.1007/s00348-010-0957-2
  19. Kerhervé F, Fitzpatrick J, Kennedy J (2010) Determination of two-dimensional space–time correlations in jet flows using simultaneous PIV and LDV measurements. Exp Thermal Fluid Sci 34(6):788–797. doi: 10.1016/j.expthermflusci.2010.01.008 CrossRefGoogle Scholar
  20. Koschatzky V, Moore P, Westerweel J, Scarano F, Boersma B (2011) High speed PIV applied to aerodynamic noise investigation. Exp Fluids 50(4):863–876. doi: 10.1007/s00348-010-0935-8 CrossRefGoogle Scholar
  21. Lee HK, Ribner H (1972) Direct correlation of noise and flow of a jet. J Acoust Soc Am 52(5A):1280–1290. doi: 10.1121/1.1913245 CrossRefGoogle Scholar
  22. Lighthill MJ (1952) On sound generated aerodynamically: I. general theory. Proc R Soc Lond Ser A Math Phys Sci 211(1107):564–587. doi: 10.1098/rspa.1952.0060 MathSciNetzbMATHCrossRefGoogle Scholar
  23. Morris SC (2011) Shear-layer instabilities: particle image velocimetry measurements and implications for acoustics. Annu Rev Fluid Mech 43(1):529–550. doi: 10.1146/annurev-fluid-122109-160742 CrossRefGoogle Scholar
  24. Panda J (2005) Identification of noise sources in high speed jets via correlation measurements: a review. Contractor Rep. CR-2005-213817, NASA Glenn Research Center, Cleveland, OhioGoogle Scholar
  25. Papamoschou D, Morris PJ, Mclaughlin DK (2010) Beamformed Flow-Acoustic correlations in a supersonic jet. AIAA J 48(10):2445–2453. doi: 10.2514/1.J050325 CrossRefGoogle Scholar
  26. Proudman I (1952) The generation of noise by isotropic turbulence. Proc R Soc A Math Phys Eng Sci 214(1116):119–132. doi: 10.1098/rspa.1952.0154 MathSciNetzbMATHCrossRefGoogle Scholar
  27. Rackl R (1973) Two causality correlation techniques applied to jet noise. PhD thesis, University of British Columbia, Vancouver, BCGoogle Scholar
  28. Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry: a practical guide, 2nd edn. Springer, Berlin, GermanyGoogle Scholar
  29. Richarz WG (1978) Direct correlation of noise and flow of a jet using laser doppler. UTIAS report 230, University of Toronto Institute for Aerospace Studies, TorontoGoogle Scholar
  30. Ruppert-Felsot J, Farge M, Petitjeans P (2009) Wavelet tools to study intermittency: application to vortex bursting. J Fluid Mech 636:427–453. doi: 10.1017/S0022112009008003 MathSciNetzbMATHCrossRefGoogle Scholar
  31. Schaffar M (1979) Direct measurements of the correlation between axial in-jet velocity fluctuations and far field noise near the axis of a cold jet. J Sound Vib 64(1):73–83. doi: 16/0022-460X(79)90573-X CrossRefGoogle Scholar
  32. Schröder A, Dierksheide U, Wolf J, Herr M, Kompenhans J (2004) Investigation on trailing-edge noise sources by means of high-speed PIV. In: Proceedings of the 12th international symposium on the application of laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  33. Seiner JM (1998) A new rational approach to jet noise reduction. Theoret Comput Fluid Dyn 10(1–4):373–383. doi: 10.1007/s001620050070 zbMATHCrossRefGoogle Scholar
  34. Siddon TE (1970) Surface dipole strength for flow past airfoils. J Acoust Soc Am 48:75. doi: 10.1121/1.1975240 CrossRefGoogle Scholar
  35. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79(1):6178. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 Google Scholar
  36. Violato D, Scarano F (2011) Three-dimensional evolution of flow structures in transitional circular and chevron jets. Phys Fluids 23(12):124,104–124,104–125. doi: 10.1063/1.3665141
  37. Wernet MP (2007) Temporally resolved PIV for space–time correlations in both cold and hot jet flows. Meas Sci Technol 18(5):1387. doi: 10.1088/0957-0233/18/5/027 CrossRefGoogle Scholar
  38. Willert C, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10. doi: 10.1007/BF00190388

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • David E. S. Breakey
    • 1
    Email author
  • John A. Fitzpatrick
    • 1
  • Craig Meskell
    • 1
  1. 1.Department of Mechanical and Manufacturing EngineeringTrinity CollegeDublinIreland

Personalised recommendations