Experiments in Fluids

, 54:1503 | Cite as

The quest for the most spherical bubble: experimental setup and data overview

  • Danail Obreschkow
  • Marc Tinguely
  • Nicolas Dorsaz
  • Philippe Kobel
  • Aurele de Bosset
  • Mohamed Farhat
Research Article


We describe a recently realized experiment producing the most spherical cavitation bubbles today. The bubbles grow inside a liquid from a point plasma generated by a nanosecond laser pulse. Unlike in previous studies, the laser is focussed by a parabolic mirror, resulting in a plasma of unprecedented symmetry. The ensuing bubbles are sufficiently spherical that the hydrostatic pressure gradient caused by gravity becomes the dominant source of asymmetry in the collapse and rebound of the cavitation bubbles. To avoid this natural source of asymmetry, the whole experiment is therefore performed in microgravity conditions (ESA, 53rd and 56th parabolic flight campaign). Cavitation bubbles were observed in microgravity (∼0 g), where their collapse and rebound remain spherical, and in normal gravity (1 g) to hyper-gravity (1.8 g), where a gravity-driven jet appears. Here, we describe the experimental setup and technical results, and overview the science data. A selection of high-quality shadowgraphy movies and time-resolved pressure data is published online.


Cavitation Bubble Normal Gravity Parabolic Flight Parabolic Mirror Bubble Generation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This research was supported by the Swiss NSF (Grant No. 200020-116641 and PBELP2-130895) and the European Space Agency ESA.


  1. Akhatov I, Lindau O, et al (2001) Collapse and rebound of a laser-induced cavitation bubble. Phys Fluids 13(10):2805–2819CrossRefGoogle Scholar
  2. Antoine C (1888) Tensions des vapeurs; nouvelle relation entre les tensions et les temp ratures. Comptes Rendus des Sances de l’Acadmie des Sciences 107:681–837Google Scholar
  3. Benjamin TB, Ellis AT (1966) The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil Trans R Soc Lond A 260(1110):221–240CrossRefGoogle Scholar
  4. Blake JR (1988) The kelvin impulse—application to cavitation bubble dynamics. J Aust Math Soc B 30(Part 2):127–146MathSciNetzbMATHCrossRefGoogle Scholar
  5. Blake JR, Keen GS, Tong RP, Wilson M (1999) Acoustic cavitation: the fluid dynamics of non-spherical bubbles. Philos T R Soc A 357(1751):251–267MathSciNetzbMATHCrossRefGoogle Scholar
  6. Brenner M, Hilgenfeldt S, Lohse D (2002) Single-bubble sonoluminescence. Rev Mod Phys 74(2): 425–484CrossRefGoogle Scholar
  7. Brujan EA, Keen GS, Vogel A, Blake JR (2002) The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys Fluids 14(1):85–92CrossRefGoogle Scholar
  8. Byun KT, Kwak HY (2004) A model of laser-induced cavitation. Jpn J Appl Phys 43(2):621–630. doi: 10.1143/JJAP.43.621 CrossRefGoogle Scholar
  9. Cho C, Urquidi J, Gellene G, Wilse Robinson G (2001) Mixture model description of the t-, p dependence of the refractive index of water. J Chem Phys 114(7):3157–3162CrossRefGoogle Scholar
  10. Hasmatuchi V (2011) Hydrodynamics of a pump-turbine operating at off-design conditions in generating mode. PhD thesis, EPFL-LMHGoogle Scholar
  11. Hickling R (1965) Nucleation of freezing by cavity collapse and its relation to cavitation damage. Nature 206:915–917. doi: 10.1038/206915a0 CrossRefGoogle Scholar
  12. Katz JI (1999) Jets from collapsing bubbles. Proc R Soc Lond A 455:323–328zbMATHCrossRefGoogle Scholar
  13. Kobel P, Obreschkow D, Dorsaz N, De Bosset A, Farhat M (2009) Techniques for generating centimetric drops in microgravity and application to cavitation studies. Exp Fluids 47:39–48CrossRefGoogle Scholar
  14. Lauterborn W (1972) High-speed photography of laser-induced breakdown in liquids. Appl Phys Lett 21(1):27–29. doi: 10.1063/1.1654204 CrossRefGoogle Scholar
  15. Lauterborn W, Bolle H (1975) Experimental investigations of cavitation bubble collapse in the neighborhood of a solid boundary. J Fluid Mech 72:391–399CrossRefGoogle Scholar
  16. Lauterborn W, Kurz T (2010) Physics of bubble oscillations. Rep Prog Phys 73(10):106501. doi: 10.1088/0034-4885/73/10/106501 CrossRefGoogle Scholar
  17. Leighton TG, Cleveland RO (2010) Lithotripsy. Proc Inst Mech Eng H 224(2):317–342CrossRefGoogle Scholar
  18. Lim KY, Quinto-Su PA, et al (2010) Nonspherical laser-induced cavitation bubbles. Phys Rev E 81(1):016308. doi: 10.1103/PhysRevE.81.016308 CrossRefGoogle Scholar
  19. Mason TJ, Paniwnyk L, Lorimer JP (1996) The uses of ultrasound in food technology. Ultrason Sonochem 3(3):S253–S260. doi:  10.1016/S1350-4177(96)00034-X CrossRefGoogle Scholar
  20. Obreschkow D, Kobel P, Dorsaz N, de Bosset A, Nicollier C, Farhat M (2006) Cavitation bubble collapse inside liquid spheres in microgravity. Phys Rev Lett 97(9):094502CrossRefGoogle Scholar
  21. Obreschkow D, Dorsaz N, Kobel P, de Bosset A, Tinguely M, Field J, Farhat M (2011a) Confined shocks inside isolated liquid volumes: a new path of erosion? Phys Fluids Lett 23(10):101702. doi: 10.1063/1.3647583 CrossRefGoogle Scholar
  22. Obreschkow D, Tinguely M, Dorsaz N, Kobel P, de Bosset A, Farhat M (2011b) Universal scaling law for jets of collapsing bubbles. Phys Rev Lett 107:204501. doi: 10.1103/PhysRevLett.107.204501 CrossRefGoogle Scholar
  23. Obreschkow D, Bruderer M, Farhat M (2012) Analytical approximations for the collapse of an empty spherical bubble. Phys Rev E 85:066303. doi 10.1103/PhysRevE.85.066303:, URL
  24. Ohl CD, Arora M, Dijkink R, Janve V, Lohse D (2006) Surface cleaning from laser-induced cavitation bubbles. Appl Phys Lett 89(7):074102CrossRefGoogle Scholar
  25. Ohl CD, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Philos T R Soc A 357(1751):269–294MathSciNetzbMATHCrossRefGoogle Scholar
  26. Philipp A, Lauterborn W (1998) Cavitation erosion by single laser-produced bubbles. J Fluid Mech 361:75–116zbMATHCrossRefGoogle Scholar
  27. Plesset M, Chapman RB (1971) Collapse of an initially spherical vapor cavity in the neighborhood of a solid boundary. J Fluid Mech 47:283–290CrossRefGoogle Scholar
  28. Rayleigh L (1917) On the pressure developed in a liquid during the collapse of a spherical cavity. Philos Mag 34:94–98zbMATHGoogle Scholar
  29. Sato T, Tinguely M, Oizumi M, Farhat M (2013) Evidence for hydrogen generation in laser- or spark-induced cavitation bubbles. Appl Phys Lett 102(7):074105. doi: 10.1063/1.4793193 CrossRefGoogle Scholar
  30. Schnerr G, Sezal I, Schmidt S (2008) Numerical investigation of three-dimensional cloud cavitation with special emphasis on collapse induced shock dynamics. Phys Fluids 20(4):040703CrossRefGoogle Scholar
  31. Stokes G (1847) Notebook preserved in the Cambridge University Library, Add. MS. 7656. NB23Google Scholar
  32. Suslick KS (1990) Sonochemistry. Science 247(4949):1439–1445CrossRefGoogle Scholar
  33. Tandiono, Ohl SW, Ow DSW, Klaseboer E, Wong VV, Dumke R, Ohl CD (2011) Sonochemistry and sonoluminescence in microfluidics. Proc Natl Acad Sci USA 108(15):5996–5998Google Scholar
  34. Tinguely M (2013) The effect of pressure gradient on the collapse of cavitation bubbles in normal and reduced gravity. PhD thesis, Ecole Polytechnique Fédérale de LausanneGoogle Scholar
  35. Tinguely M, Obreschkow D, Kobel P, Dorsaz N, de Bosset A, Farhat M (2012) Energy partition at the collapse of spherical cavitation bubbles. Phys Rev E 86(4):046315. doi: 10.1103/PhysRevE.86.046315 Google Scholar
  36. Tomita Y, Shima A (1990) High-speed photographic observations of laser-induced cavitation bubbles in water. Acustica 71(3):161–171Google Scholar
  37. Vogel A, Busch S, Parlitz U (1996) Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J Acoust Soc Am 100(1):148–165. doi: 10.1121/1.415878 CrossRefGoogle Scholar
  38. Vogel A, Noack J, et al (1999) Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl Phys B Lasers Opt 68:271–280CrossRefGoogle Scholar
  39. Wang QX, Blake JR (2010) Non-spherical bubble dynamics in a compressible liquid. Part 1. Travelling acoustic wave. J Fluid Mech 659:191–224. doi: 10.1017/S0022112010002430 MathSciNetzbMATHCrossRefGoogle Scholar
  40. Wolfrum B, Kurz T, Mettin R, Lauterborn W (2003) Shock wave induced interaction of microbubbles and boundaries. Phys Fluids 15(10):2916–2922CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Danail Obreschkow
    • 1
  • Marc Tinguely
    • 2
  • Nicolas Dorsaz
    • 3
  • Philippe Kobel
    • 2
  • Aurele de Bosset
    • 2
  • Mohamed Farhat
    • 2
  1. 1.International Centre for Radio Astronomy Research (ICRAR)University of Western AustraliaCrawleyAustralia
  2. 2.Laboratoire des Machines Hydrauliques EPFLLausanneSwitzerland
  3. 3.Department of ChemistryUniversity of CambridgeCambridgeUK

Personalised recommendations