Experiments in Fluids

, 54:1498 | Cite as

Tomographic reconstruction of heat release rate perturbations induced by helical modes in turbulent swirl flames

  • Jonas P. Moeck
  • Jean-François Bourgouin
  • Daniel Durox
  • Thierry Schuller
  • Sébastien Candel
Research Article

Abstract

Swirl flows with vortex breakdown are widely used in industrial combustion systems for flame stabilization. This type of flow is known to sustain a hydrodynamic instability with a rotating helical structure, one common manifestation of it being the precessing vortex core. The role of this unsteady flow mode in combustion is not well understood, and its interaction with combustion instabilities and flame stabilization remains unclear. It is therefore important to assess the structure of the perturbation in the flame that is induced by this helical mode. Based on principles of tomographic reconstruction, a method is presented to determine the 3-D distribution of the heat release rate perturbation associated with the helical mode. Since this flow instability is rotating, a phase-resolved sequence of projection images of light emitted from the flame is identical to the Radon transform of the light intensity distribution in the combustor volume and thus can be used for tomographic reconstruction. This is achieved with one stationary camera only, a vast reduction in experimental and hardware requirements compared to a multi-camera setup or camera repositioning, which is typically required for tomographic reconstruction. Different approaches to extract the coherent part of the oscillation from the images are discussed. Two novel tomographic reconstruction algorithms specifically tailored to the structure of the heat release rate perturbations related to the helical mode are derived. The reconstruction techniques are first applied to an artificial field to illustrate the accuracy. High-speed imaging data acquired in a turbulent swirl-stabilized combustor setup with strong helical mode oscillations are then used to reconstruct the 3-D structure of the associated perturbation in the flame.

Keywords

Radon Proper Orthogonal Decomposition Heat Release Rate Proper Orthogonal Decomposition Mode Tomographic Reconstruction 

Notes

Acknowledgments

This work is supported by the Agence Nationale de la Recherche, contract N° ANR-08-BLAN-0027-01, the Délégation Générale pour l’Armement, and by Snecma (Safran Group).

References

  1. Abramowitz M, Stegun IA (1964) Handbook of mathematical functions with formulas, graphs, and mathematical tables, 9th edn. Dover, New YorkGoogle Scholar
  2. Anacleto PM, Fernandes EC, Heitor MV, Shtork SI (2003) Swirl flow structure and flame characteristics in a model lean premixed combustor. Combust Sci Technol 175(8):1369–1388CrossRefGoogle Scholar
  3. Anikin N, Suntz R, Bockhorn H (2010) Tomographic reconstruction of the OH*-chemiluminescence distribution in premixed and diffusion flames. Appl Phys B 100:675–694CrossRefGoogle Scholar
  4. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Annu Rev Fluid Mech 25:539–575MathSciNetCrossRefGoogle Scholar
  5. Cala CE, Fernandes EC, Heitor MV, Shtork SI (2006) Coherent structures in unsteady swirling jet flow. Exp Fluids 40:267–276CrossRefGoogle Scholar
  6. Chomaz JM (2005) Global instabilities in spatially developing flows: non-normality and nonlinearity. Annu Rev Fluid Mech 37:357–392MathSciNetCrossRefGoogle Scholar
  7. Deans SR (2007) The Radon transform and some of its applications. Dover, New YorkMATHGoogle Scholar
  8. Duwig C, Iudiciani P (2010) Extended proper orthogonal decomposition for analysis of unsteady flames. Flow Turbul Combust 84:25–47MATHCrossRefGoogle Scholar
  9. Fernandes EC, Heitor MV, Shtork SI (2006) An analysis of unsteady highly turbulent swirling flow in a model vortex combustor. Exp Fluids 40:177–187CrossRefGoogle Scholar
  10. Floyd J, Kempf AM (2011) Computed tomography of chemiluminescence (CTC): high resolution and instantaneous 3-D measurements of a matrix burner. Proc Combust Inst 33:751–758CrossRefGoogle Scholar
  11. Floyd J, Geipel P, Kempf AM (2011) Computed tomography of chemiluminescence (CTC): instantaneous 3D measurements and phantom studies of a turbulent opposed jet flame. Combust Flame 158:376–391CrossRefGoogle Scholar
  12. Fokaides P, Weiß M, Kern M, Zarzalis N (2009) Experimental and numerical investigation of swirl induced self-excited instabilities at the vicinity of an airblast nozzle. Flow Turbul Combust 83:511–533MATHCrossRefGoogle Scholar
  13. Gallaire F, Ruith M, Meiburg E, Chomaz JM, Huerre P (2006) Spiral vortex breakdown as a global mode. J Fluid Mech 549:71–80CrossRefGoogle Scholar
  14. Galley D, Ducruix S, Lacas F, Veynante D (2011) Mixing and stabilization study of a partially premixed swirling flame using laser induced fluorescence. Combust Flame 158:155–171CrossRefGoogle Scholar
  15. García-Villalba M, Fröhlich J, Rodi W (2007) Numerical simulations of isothermal flow in a swirl burner. J Eng Gas Turbines Power 129(2):377–386CrossRefGoogle Scholar
  16. Gupta AK, Lilley DG, Syred N (1984) Swirl flows. Abacus Press, Tunbridge WellsGoogle Scholar
  17. Güthe F, Schuermans B (2007) Phase-locking in post-processing for pulsating flames. Meas Sci Technol 18:3036–3042CrossRefGoogle Scholar
  18. Hansen PC, Saxild-Hansen M (2012) AIR Tools—a MATLAB package of algebraic iterative reconstruction methods. J Comput Appl Math 236(8):2167–2178MathSciNetMATHCrossRefGoogle Scholar
  19. Huang Y, Yang V (2009) Dynamics and stability of lean-premixed swirl-stabilized combustion. Prog Energy Combust Sci 35(4):293–364CrossRefGoogle Scholar
  20. Huerre P, Monkewitz PA (1990) Local and global instabilities in spatially developing flows. Annu Rev Fluid Mech 22:473–537MathSciNetCrossRefGoogle Scholar
  21. Ishino Y, Ohiwa N (2005) Three-dimensional computerized tomographic reconstruction of instantaneous distribution of chemiluminescence of a turbulent premixed flame. JSME Ser B 48(1):34–40CrossRefGoogle Scholar
  22. Iudiciani P, Duwig C (2011) Large eddy simulation of the sensitivity of vortex breakdown and flame stabilisation to axial forcing. Flow Turbul Combust 86:639–666MATHCrossRefGoogle Scholar
  23. Kak AC, Slaney M (1988) Principles of computerized tomographic imaging. IEEE Press, New YorkMATHGoogle Scholar
  24. Lacarelle A, Luchtenburg DM, Bothien MR, Noack BR, Paschereit CO (2010) Combination of image postprocessing tools to identify coherent structures of premixed flames. AIAA J 48(8):1708–1720CrossRefGoogle Scholar
  25. Lefebvre A (1998) Gas Turbine Combustion, 2nd edn. Taylor and Francis, LondonGoogle Scholar
  26. Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J Fluid Mech 525:115–159MATHCrossRefGoogle Scholar
  27. Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust Sci 27(4):431–481CrossRefGoogle Scholar
  28. Natterer F (1999) Numerical methods in tomography. Acta Numer 8:107–141MathSciNetCrossRefGoogle Scholar
  29. Natterer F (2001) The mathematics of computerized tomography. SIAM, PhiladelphiaMATHCrossRefGoogle Scholar
  30. Oberleithner K, Sieber M, Nayeri CN, Paschereit CO, Petz C, Hege HC, Noack BR, Wygnanski I (2011) Three-dimensional coherent structures in a swirling jet undergoing vortex breakdown: stability analysis and empirical mode construction. J Fluid Mech 679:383–414MATHCrossRefGoogle Scholar
  31. O’Connor J, Lieuwen T (2012) Recirculation zone dynamics of a transversely excited swirl flow and flame. Phys Fluids 24:075107 (30 pp)Google Scholar
  32. Palies P, Durox D, Schuller T, Candel S (2010) The combined dynamics of swirler and turbulent premixed swirling flames. Combust Flame 157(9):1698–1717CrossRefGoogle Scholar
  33. Palies P, Durox D, Schuller T, Candel S (2011) Experimental study on the effect of swirler geometry and swirl number on flame describing functions. Combust Sci Technol 183(7):704–717CrossRefGoogle Scholar
  34. Palies P, Schuller T, Durox D, Gicquel L, Candel S (2011) Acoustically perturbed turbulent premixed swirling flames. Phys Fluids 23:037101 (15 pp)Google Scholar
  35. Paschereit CO, Gutmark E, Weisenstein W (2000) Excitation of thermoacoustic instabilities by interaction of acoustics and unstable swirling flow. AIAA J 38(6):1025–1034CrossRefGoogle Scholar
  36. Rowley CW, Mezić I, Bagheri S, Schlattner P, Henningson DS (2009) Spectral analysis of nonlinear flows. J Fluid Mech 641:115–127MathSciNetMATHCrossRefGoogle Scholar
  37. Ruith MR, Chen P, Meiburg E, Maxworthy T (2003) Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J Fluid Mech 486:331–378MathSciNetMATHCrossRefGoogle Scholar
  38. Schimek S, Moeck JP, Paschereit CO (2011) An experimental investigation of the nonlinear response of an atmospheric swirl-stabilized premixed flame. J Eng Gas Turbines Power 133:101502 (7 pp)Google Scholar
  39. Schmid PJ (2010) Dynamic mode decomposition of numerical and experimental data. J Fluid Mech 656:5–28MathSciNetMATHCrossRefGoogle Scholar
  40. Schmid PJ, Henningson DS (2001) Stability and transition in shear flows. Springer, New YorkMATHCrossRefGoogle Scholar
  41. Schmid PJ, Li L, Juniper MP, Pust O (2011) Applications of the dynamic mode decomposition. Theor Comput Fluid Dyn 25(1–4):249–259CrossRefGoogle Scholar
  42. Stöhr M, Sadanandan R, Meier W (2011) Phase-resolved characterization of vortex–flame interaction in a turbulent swirl flame. Exp Fluids 51(4):1153–1167CrossRefGoogle Scholar
  43. Stöhr M, Boxx I, Carter CD, Meier W (2012) Experimental study of vortex–flame interaction in a gas turbine model combustor. Combust Flame 159:2636–2649CrossRefGoogle Scholar
  44. Syred N (2006) A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog Energy Combust Sci 32(2):93–161CrossRefGoogle Scholar
  45. Upton TD, Verhoeven DD, Hudgins DE (2011) High-resolution computed tomography of a turbulent reacting flow. Exp Fluids 50:125–134CrossRefGoogle Scholar
  46. van Oudheusden BW, Scarano F, van Hinsberg NP, Watt DW (2005) Phase-resolved characterization of vortex shedding in the near wake of a square-section cylinder at incidence. Exp Fluids 39:86–98CrossRefGoogle Scholar
  47. Verhoeven D (1993) Limited-data computed tomography algorithms for the physical sciences. Appl Opt 32(20):3736–3754CrossRefGoogle Scholar
  48. Worth NA, Dawson JR (2013) Tomographic reconstruction of OH* chemiluminescence in two interacting turbulent flames. Meas Sci Technol 24:024013 (11 pp)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Jonas P. Moeck
    • 1
  • Jean-François Bourgouin
    • 2
    • 3
    • 4
  • Daniel Durox
    • 2
    • 3
  • Thierry Schuller
    • 2
    • 3
  • Sébastien Candel
    • 2
    • 3
  1. 1.Institut für Strömungsmechanik und Technische AkustikTechnische Universität BerlinBerlinGermany
  2. 2.CNRS, UPR 288, Laboratoire d’Energétique Moléculaire et Macroscopique Combustion (EM2C)Châtenay-MalabryFrance
  3. 3.Ecole Centrale ParisChâtenay-MalabryFrance
  4. 4.Snecma (Groupe Safran)Centre de VillarocheMoissy-CramayelFrance

Personalised recommendations