Advertisement

Experiments in Fluids

, 54:1461 | Cite as

Delay of natural transition with dielectric barrier discharges

  • A. DuchmannEmail author
  • S. Grundmann
  • C. Tropea
Research Article
Part of the following topical collections:
  1. Topics in Flow Control

Abstract

Delay of boundary-layer transition along a flat plate with adverse pressure gradient is achieved via dielectric barrier discharges. In contrast to earlier investigations, transition is initiated by naturally occurring Tollmien–Schlichting waves. A single dielectric barrier discharge actuator is used to create a body force that locally alters the flow stability leading to an attenuation of broadband disturbances. Hot-wire measurements characterize the resulting transition delay, and particle image velocimetry clarifies the local influence on the velocity profiles. Linear stability theory is applied to analyze a numerical solution of this boundary-layer flow, showing good agreement with the experimentally measured data. The stability analysis shows that disturbances are locally attenuated and transition is correctly predicted to occur at Reynolds numbers increased by 10 %. In contrast to previous investigations, the experiments are conducted at a reasonably high free-stream velocity of 20 m/s paving the way for planned in-flight experiments.

Keywords

Particle Image Velocimetry Shape Factor Dielectric Barrier Discharge Streamwise Direction Adverse Pressure Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This investigation has been partially sponsored by the Air Force Office of Scientific Research under grant FA8655-09-1-5012 supervised by Douglas Smith. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright notation thereon.

References

  1. Albrecht T, Grundmann R, Mutschke G, Gerbeth G (2006) On the stability of the boundary layer subject to a wall-parallel Lorentz force. Phys Fluids 18(9):098103. doi: 10.1063/1.2353401 MathSciNetCrossRefGoogle Scholar
  2. Arnal D, Casalis D, Houdeville R (2008) Practical transition prediction methods: subsonic and transonic flows. In: AVT-151 RTO AVT/VKI Lecture Series, Rhode St. Gense, Belgium, 9–12 June, RTO-EN-AVT-151-08, ISBN: 978-92-837-0900-6Google Scholar
  3. Benard N, Moreau E, Griffin J, Cattafesta L (2009) Slope seeking for autonomous lift improvement by plasma surface discharge. Exp Fluids. doi: 10.1007/s00348-009-0767-6
  4. Cebeci T (1999) An engineering approach to the calculation of aerodynamic flows. Horizons, Long Beach, CA, ISBN: 0966846125Google Scholar
  5. Duchmann A, Kriegseis J, Grundmann S, Tropea C (2009) Customizing DBD actuators for flow-control applications using PIV. In: 8th international symposium on particle image velocimetry, Melbourne, AustraliaGoogle Scholar
  6. Duchmann A, Reeh A, Quadros R, Kriegseis J, Tropea C (2010) Linear stability analysis for manipulated boundary-layer flows using plasma actuators. In: Gladwell GML, Moreau R, Schlatter P, Henningson DS (eds) Seventh IUTAM symposium on laminar–turbulent transition, IUTAM Bookseries, vol 18. Springer, Berlin, pp 153–158. doi: 10.1007/978-90-481-3723-7_23
  7. Duchmann A, Kurz A, Widmann A, Grundmann S, Tropea C (2012a) Characterization of Tollmien–Schlichting wave damping by DBD plasma actuators using phase-locked PIV. In: 50th AIAA aerospace sciences meeting, Nashville, TN, USA, AIAA 2012-903Google Scholar
  8. Duchmann A, Vieira D, Grundmann S, Tropea C (2012b) Stabilization of laminar boundary-layer flow using dielectric barrier discharges. In: 83rd annual meeting of the international association of applied mathematics and mechanics, 26−30 March, Darmstadt, GermanyGoogle Scholar
  9. Fransson JHM, Alfredsson PH (2003) On the disturbance growth in an asymptotic suction boundary layer. J Fluid Mech 482:51–90. doi: 10.1017/S0022112003003926 zbMATHCrossRefGoogle Scholar
  10. Fransson JHM, Talamelli A, Brandt L, Cossu C (2006) Delaying transition to turbulence by a passive mechanism. Phys Rev Lett 96(6):064501. doi: 10.1103/PhysRevLett.96.064501 CrossRefGoogle Scholar
  11. Gad-el-Hak M (2000) Flow control: passive, active, and reactive flow management. Cambridge University Press, Cambridge. ISBN: 0521770068Google Scholar
  12. Gibson B, Arjomandi M, Kelso RM (2012) The response of a flat plate boundary layer to an orthogonally arranged dielectric barrier discharge actuator. J Phys D Appl Phys 45:025202. doi: 10.1088/0022-3727/45/2/025202 CrossRefGoogle Scholar
  13. Grundmann S (2008) Transition control using dielectric barrier discharge actuators. PhD thesis, Technische Universität DarmstadtGoogle Scholar
  14. Grundmann S, Tropea C (2007a) Active cancellation of artificially introduced Tollmien–Schlichting waves using plasma actuators. Exp Fluids 44:795–806CrossRefGoogle Scholar
  15. Grundmann S, Tropea C (2007b) Experimental transition delay using glow-discharge plasma actuators. Exp Fluids 42(4):653–657CrossRefGoogle Scholar
  16. Grundmann S, Tropea C (2009) Experimental damping of boundary-layer oscillations using DBD plasma actuators. Int J Heat Fluid Flow 30:394–402CrossRefGoogle Scholar
  17. Jacob J, Ramakumar K (2005) Control of laminar and turbulent shear flows using plasma actuators. In: 4th international symposium on turbulence and shear flow phenomena, Williamsburg, VA, 27–29 June 2005Google Scholar
  18. Joslin RD (1998) Aircraft laminar flow control. Annu Rev Fluid Mech 30:1–29. doi: 10.1146/annurev.fluid.30.1.1 CrossRefGoogle Scholar
  19. Jukes TN, Choi KS (2009) Control of unsteady flow separation over a circular cylinder using dielectric-barrier-discharge surface plasma. Phys Fluids 21(9):094106. doi: 10.1063/1.3237151 CrossRefGoogle Scholar
  20. Kriegseis J, Grundmann S, Tropea C (2011a) Power consumption, discharge capacitance and light emission as measures for thrust production of dielectric barrier discharge plasma actuators. J Appl Phys 110(1):013305. doi: 10.1063/1.3603030 CrossRefGoogle Scholar
  21. Kriegseis J, Möller B, Grundmann S, Tropea C (2011b) Capacitance and power consumption quantification of dielectric barrier discharge (DBD) plasma actuators. J Electrost 69(4):302–312. doi: 10.1016/j.elstat.2011.04.007 CrossRefGoogle Scholar
  22. Kriegseis J, Kurz A, Duchmann A, Grundmann S, Tropea C (2012a) Influence of air flow on the performance of DBD plasma actuators. In: AIAA 2012-0406; 50th AIAA aerospace sciences meeting, Nashville, TN, USA, AIAA 2012-406Google Scholar
  23. Kriegseis J, Schwarz C, Duchmann A, Grundmann S, Tropea C (2012b) PIV-based estimation of DBD plasma-actuator force terms. In: AIAA 2012-0411; 50th AIAA aerospace sciences meeting, Nashville, TN, USA, AIAA 2012-411Google Scholar
  24. Mack LM (1977) Transition prediction and linear stability theory. Technical report CP-224, AGARD Laminar-Turbulent Transition, 22 ppGoogle Scholar
  25. Magnier P, Boucinha V, Dong B, Weber R, Leroy-Chesneau A, Hong D (2009) Experimental study of the flow induced by a sinusoidal dielectric barrier discharge actuator and its effect on a flat plate natural boundary layer. J Fluids Eng 131:011203CrossRefGoogle Scholar
  26. Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D Appl Phys 40:605–636CrossRefGoogle Scholar
  27. Riherd M, Roy S (2012) Linear stability analysis of a boundary layer with plasma actuators. In: 50th AIAA aerospace science meeting and exhibition, 9–12 Jan, Nashville, TN, AIAA 2012-0290Google Scholar
  28. Roth JR, Sherman D, Wilkinson SP (1998) Boundary layer flow control with a one atmosphere uniform glow discharge surface plasma. In: 36th AIAA aerospace science meeting and exhibit, Reno, NV, USA, AIAA 1998-0328Google Scholar
  29. Schmid PJ, Henningson DS (2001) Stability and transition in shear flows. Springer, Berlin. ISBN: 9780387989853Google Scholar
  30. Séraudie A, Vermeersch O, Arnal D (2011) DBD plasma actuator effect on a 2D model laminar boundary layer. Transition delay under ionic wind effect. In: 29th AIAA applied aerodynamics conference, 27–30 June 2011, Honolulu, HI, AIAA 2011-3515Google Scholar
  31. Sturzebecher D, Nitsche W (2003) Active cancellation of Tollmien–Schlichting instabilities on a wing using multi-channel sensor actuator systems. Int J Heat Fluid Flow 24(4):572–583CrossRefGoogle Scholar
  32. Tropea C, Yarin AL, Foss JF (2007) Springer handbook of experimental fluid mechanics. Springer, Berlin. ISBN: 3540251413Google Scholar
  33. van Ingen JL (1956) A suggested semi-empirical method for the calculation of the boundary layer transition region. Technical report, Delft University of Technology. http://resolver.tudelft.nl/uuid:cff1fb47-883f-4cdc-ad07-07d264f3fd10
  34. Velkoff HR, Ketcham J (1968) Effect of an electrostatic field on boundary-layer transition. AIAA J 6:1381–1383CrossRefGoogle Scholar
  35. Wazzan A, Gazley Jr C, Smith A (1979) Tollmien–Schlichting waves and transition: heated and adiabatic wedge flows with application to bodies of revolution. Prog Aeronaut Sci 18:351–392. doi: 10.1016/0376-0421(77)90012-4 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Center of Smart InterfacesTU DarmstadtGriesheimGermany

Personalised recommendations