Experiments in Fluids

, 54:1458 | Cite as

High-speed imaging in fluids

  • Michel Versluis
Review Article


High-speed imaging is in popular demand for a broad range of experiments in fluids. It allows for a detailed visualization of the event under study by acquiring a series of image frames captured at high temporal and spatial resolution. This review covers high-speed imaging basics, by defining criteria for high-speed imaging experiments in fluids and to give rule of thumbs for a series of cases. It also considers stroboscopic imaging, triggering and illumination, and scaling issues. It provides guidelines for testing and calibration. Ultra-high-speed imaging at frame rates exceeding 1 million frames per second is reviewed, and the combination of conventional experiments in fluid techniques with high-speed imaging techniques is discussed. The review is concluded with a high-speed imaging chart, which summarizes criteria for temporal scale and spatial scale and which facilitates the selection of a high-speed imaging system for the application.


Particle Imaging Velocimetry Frame Rate Root Canal Image Intensifier Motion Blur 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This hands-on review on high-speed imaging has not been possible without the numerous and valuable contributions of my dear colleagues and friends in the various fields of research. I would therefore like to acknowledge contributions and support from Detlef Lohse and Nico de Jong. I also enjoyed many scientific discussions with Claus-Dieter Ohl, Chao Sun, and Goji Etoh. I also gratefully acknowledge the valuable and extensive discussions with my former PhD students Erik Gelderblom, Arjan van der Bos, Aaldert Zijlstra, Bram Verhaagen, Christian Veldhuis, and Wim van Hoeve. Many undergraduate students have contributed in the course of the Physics of Fluids lab course and Experimental Methods in Fluid Mechanics course, and in particular I would like to thank Tim Segers and Hans Kroes for contributions to Fig. 1c, Sander van der Meer and Ramon van den Berg to Fig. 3, Arthur van Bilsen and Raymond Bergmann to Fig. 8, and Rik Groenen, Elbert van Putten, Erik Gelderblom, and Ramy El-Dardiry to Fig. 15. Furthermore, I would like to thank Devaraj van der Meer, Chien Ting “Cash” Chin, Frits Mastik, Charles Lancée, Martijn Frijlink, Elmer Koene, Rik Vos, Manish Arora, Rory Dijkink, Marlies Overvelde, Jos de Jong, Valeria Garbin, Siggi Thoroddsen, Flordeliza Villanueva, Xucai Chen, Peter Andresen\(^{\dagger},\) Theo van der Meer, Marcus Aldén, Clemens Kaminski, Edwin van der Bunt, Jan Tukker, Mike Bailey, Larry Crum, and Tom Matula, and Hans Reinten and Mark van den Berg of Océ Technologies and Paul Duineveld of Philips for their contributions to this review. I would like to acknowledge various technical discussions with Frans Langeweg of Kodak MASD/Roper Scientific/Redlake, Vance Parker, Sid Nebeker, and Nathan Nebeker of Cordin Company, Tim Nicholls of Photron, Kinko Tsuji, and Yasushi Kondo of Shimadzu Corporation, and John Boaler and Heiner Voges of LaVision. The technical skills of Henni Scholten\(^{\dagger},\) Gert-Wim Bruggert, Bas Benschop, Martin Bos, and of Jan Honkoop, Leo Bekkering, Wim van Alphen, and Cees Pakvis of Erasmus MC are gratefully acknowledged.

Supplementary material (51.2 mb)
Supplementary material 1 (ZIP 52,473 kb)


  1. Adrian RJ, Westerweel J (2011) Particle image velocimetry. Cambridge University Press, CambridgeGoogle Scholar
  2. Aldén M, Bood J, Li Z, Richter M (2011) Visualization and understanding of combustion processes using spatially and temporally resolved laser diagnostic techniques. Proc Comb Inst 33:69–97CrossRefGoogle Scholar
  3. Anna SL, Bontoux N, Stone HA (2003) Formation of dispersions using ‘flow focusing’ in microchannels. Appl Phys Lett 82:364CrossRefGoogle Scholar
  4. Arroyo MP, Hinsch KD (2008) Recent developments of PIV towards 3D measurements. Topics in applied physics, vol 112. Springer, Berlin, pp 127–154Google Scholar
  5. Bailey M, Khokhlova V, Sapozhnikov O, Kargl S, Crum L (2003) Physical mechanisms of the therapeutic effect of ultrasound (a review). Acoust Phys 49:369–388CrossRefGoogle Scholar
  6. Bergmann RPHM, van der Meer D, Stijnman MA, Sandtke M, Prosperetti A, Lohse D (2006) Giant Bubble Pinch-Off. Phys Rev Lett 96:154505Google Scholar
  7. Bouakaz A, Versluis M, de Jong N (2005) High-speed optical observations of contrast agent destruction. Ultrasound Med Biol 31(3):391–399CrossRefGoogle Scholar
  8. Boutsioukis C, Verhaagen B, Versluis M, Kastrinakis E, Wesselink PR, van der Sluis LWM (2010) Evaluation of irrigant flow in the root canal using different needle types by an unsteady computational fluid dynamics model. J Endod 36(5):875–879CrossRefGoogle Scholar
  9. Bremond N, Arora M, Ohl C, Lohse D (2006) Controlled multibubble surface cavitation. Phys Rev Lett 96:224501CrossRefGoogle Scholar
  10. Brixner B (1992) In: Dewey JM, Racca RG (eds) Proceedings of 20th international congress on high speed photography and photonics, vol 1801. SPIE, Bellingham, WA, pp 52–60Google Scholar
  11. Brückner C (1999) Structure and dynamics of the wake of bubbles and its relevance for bubble interaction. Phys Fluids 11:1781–1796MathSciNetCrossRefGoogle Scholar
  12. Bruun H (1995) Hot wire anemometry: principles and signal analysis. Oxford Univesity Press, OxfordGoogle Scholar
  13. Chen AU, Basaran OA (2001) A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys Fluids 14:L1–L4CrossRefGoogle Scholar
  14. Chin CT, Lancée C, Borsboom J, Mastik F, Frijlink ME, de Jong N, Versluis M, Lohse D (2003) Brandaris 128: a digital 25 million frames per second camera with 128 highly sensitive frames. Rev Sci Instr 74(12):5026–5034CrossRefGoogle Scholar
  15. Chomas JE, Dayton PA, May D, Allen J, Klibanov A, Ferrara K (2000) Optical observation of contrast agent destruction. Appl Phys Lett 77(7):1056–1058CrossRefGoogle Scholar
  16. Cohen I, Brenner MP, Eggers J, Nagel SR (1999) Two fluid drop snap-off problem: experiments and theory. Phys Rev Lett 83:1147CrossRefGoogle Scholar
  17. Collyer AA, Fisher P (1976) The Kaye effect revisited. Nature 261:682–683CrossRefGoogle Scholar
  18. Cranz C, Glatzel B (1912) Photographic recording of ballistic abd other rapid phenomena with the aid of the quenched spark. Phys Gesell 14:525–535Google Scholar
  19. Crimaldi JP (2008) Planar laser induced fluorescence in aqueous flows. Exp Fluids 44:851–863CrossRefGoogle Scholar
  20. Dahm WJA, Dimotakis PE (1987) Measurements of entrainment and mixing in turbulent jets. AAIA 25(9):1216–1223CrossRefGoogle Scholar
  21. Davidson M, Abramowitz M (2002) In: Encyclopedia of imaging science and technology, pp 1106–1141Google Scholar
  22. de Gans BJ, Duineveld PC, Schubert US (2004) Inkjet printing of polymers: state of the art and future developments. Adv Mater 16(3):203–211CrossRefGoogle Scholar
  23. de Jong N, Frinking PJA, Bouakaz A, Goorden M, Schourmans T, Xu JP, Mastik F (2000) Optical imaging of contrast agent microbubbles in an ultrasound field with a 100-MHz camera. Ultrasound Med Biol 26:487–492CrossRefGoogle Scholar
  24. de Jong J, de Bruin G, Reinten H, van den Berg M, Wijshoff H, Versluis M, Lohse D (2006) Air entrapment in piezo-driven inkjet printheads. J Acoust Soc Am 120:1257–1265Google Scholar
  25. Desse JM (2006) Recent contribution in color interferometry and applications to high-speed flows. Opt Laser Eng 44:304–320CrossRefGoogle Scholar
  26. de Vries AWG, Biesheuvel A, van Wijngaarden L (2002) Notes on the path and wake of a gas bubble rising in pure water. Int J Multiphase Flow 28:1823–1835zbMATHCrossRefGoogle Scholar
  27. Ding T, van der Meer TH, Versluis M, Golombok M, Hult J, Aldén M, Kaminski CF (2000) Proceedings of third international symposium on turbulence, heat and mass transfer, pp 857–864Google Scholar
  28. Dong H, Carr WW, Morris JF (2006) Visualization of drop-on-demand inkjet: drop formation and deposition. Rev Sci Instr 77(8):085101CrossRefGoogle Scholar
  29. Dreyer T, Krauss W, Bauer E, Riedlinger RE (2000) Proceedings of IEEE ultrasonics symposium, vol 2. pp 1239–1242Google Scholar
  30. Eckbreth AC (1996) Laser diagnostics for combustion temperature and species, 2nd edn. Gordon and Breach, UKGoogle Scholar
  31. Edgerton HE, Killian JJR (1954) Flash! seeing the unseen by ultra high-speed photography. Boston C. T. Branford Co, Boston, p 41, 130Google Scholar
  32. Edgerton HE, Jussim E, Kayafras G, Hayafas G (1987) Stopping time: the photographs of Harold Edgerton. Harry N Abrams Inc, New York, p 45Google Scholar
  33. Etoh TG, Poggemenn D, Ruckelshausen A, Theuwissen A, Kreider G, Folkerts HO, Mutoh H, Kondo Y, Maruno H, Takubo K, Soya H, Takehara K, Okinaka T, Takano Y, Reisinger T, Lohmann C (2002) IEEE international solid-state circuits conference digest of technical papers, pp 46–47Google Scholar
  34. Etoh TG, Nguyen DH, Dao SVT, Vo CL, Tanaka M, Takehara K, Okinaka T, Kuijk HV, Bosiers J, Lesser M, Ouellete D, Maruyama M, Hayashida T, Arai T (2011) IEEE international solid-state circuits conference digest of technical papers, pp 406–407Google Scholar
  35. Fry SN, Sayaman R, Dickinson MH (2003) The aerodynamics of free-flight maneuvers in Drosophila. Science 300(5618):495–498Google Scholar
  36. Gasteuil Y, Shew WL, Gibert M, Chillá F, Castaing B, Pinton JF (2007) Lagrangian temperature, velocity, and local heat flux measurement in Rayleigh-Bénard convection. Phys Rev Lett 99:234302CrossRefGoogle Scholar
  37. Gelderblom EC, Vos HJ, Mastik F, Faez T, Lucan Y, Kokhuis TJA, van der Steen AFW, Lohse D, de Jong N, Versluis M (2012) Brandaris 128 ultra-high-speed imaging facility: 10 years of operation, updates and enhanced features. Rev Sci Instrum 83:103706Google Scholar
  38. Gendrich CP, Koochesfahani MM, Nocera DG (1997) Molecular tagging velocimetry and other novel applications of a new phosphorescent supramolecule. Exp Fluids 23(5):361–372CrossRefGoogle Scholar
  39. Glasheen J, McMahon T (1996) A hydrodynamic model of locomotion in the Basilisk Lizard. Nature 380:340CrossRefGoogle Scholar
  40. Gordillo M, Sevilla A, Rodríguez-Rodríguez J, Martnez-Bazán C (2005) Axisymmetric bubble pinch-off at high Reynolds numbers. Phys Rev Lett 95(19):194501CrossRefGoogle Scholar
  41. Hiller B, Booman RA, Hassa C, Hanson RK (1984) Rev Sci Instr 55(12):1964–1967CrossRefGoogle Scholar
  42. Hoess P, Fleder K (2003) In: Takayama K, Saito T, Kleine H, Timofeev EV (eds) Proceedings on 24th international congress on high-speed photography and photonics, vol 4183. SPIE, Bellingham, WA, p 127Google Scholar
  43. Honour J (1994) In: Proceedings on 21st international congress on high speed photography and photonics, vol. 2513 SPIE, Bellingham, WA, pp 28–34Google Scholar
  44. Honour J (1997) Electronic camera for simultaneous framing and streak recording. In: Proceedings of SPIE 2869, 22nd international congress on high-speed photography and photonics, p 668Google Scholar
  45. Honour J (2002) In: Ray SF (eds) High speed photography and photonics, vol. PM120, SPIE, Bellingham, WA, pp 134–149Google Scholar
  46. Hoyer K, Holzner M, Luethi B, Guala M, Liberzon A, Kinzelbach W (2005) 3D scanning particle tracking velocimetry. Exp Fluids 39:923–934CrossRefGoogle Scholar
  47. Hu D, Chan B, Bush J (2003) The hydrodynamics of water strider locomotion. Nature 424:663–666CrossRefGoogle Scholar
  48. Hutchings IM, Martin GD, Hoath SD (2007) High speed imaging and analysis of jet and drop formation. J Imaging Sci Technol 51(5):438CrossRefGoogle Scholar
  49. Igel EA, Kristiansen M (1997) Rotating-mirror streak and framing cameras. vol PM43, SPIE, Bellingham, WAGoogle Scholar
  50. Kaye A (1963) A bouncing liquid stream. Nature 197:100–102CrossRefGoogle Scholar
  51. Kennedy JE, ter Haar GR, Cranston D (2003) High intensity focused ultrasound: surgery of the future? Br J Radiol 76(909):590–599CrossRefGoogle Scholar
  52. Kitzhofer J, Nonn T, Brückner C (2011) Generation and visualization of volumetric PIV data fields. Exp Fluids 51:1471–1492CrossRefGoogle Scholar
  53. Kleine H (2010) Filming the invisible time-resolved visualization of compressible flows. Eur Phys J Special Topics 182:3–34CrossRefGoogle Scholar
  54. Kleine H, Olivier H, Tsuji K, Etoh K, Takehara K, Etoh TG (2012) Time-resolved Mach-Zehnder interferometry of shock waves. In: 28th international symposium on shock waves, vol 1. Springer, Berlin, pp 577–583Google Scholar
  55. Kohse-Höinghaus K, Jeffries JB (2002) Applied combustion diagnostics. Taylor and Francis, New YorkGoogle Scholar
  56. Kooiman K, Böhmer MR, Emmer M, Vos HJ, Chlon C, Shi WT, Hall CS, de Winter SHPM, Schroën K, Versluis M, de Jong N, van Wamel A (2009) Oil-filled polymer microcapsules for ultrasound-mediated delivery of lipophilic drugs. J Contr Rel 133:109–118CrossRefGoogle Scholar
  57. Kudo N, Okada K, Yamamoto K (2009) Sonoporation by single-shot pulsed ultrasound with microbubbles adjacent to cells. Biophys J 96(12):4866–4876CrossRefGoogle Scholar
  58. Kun F, Wittel FK, Herrmann HJ, Kröplin BH, Måløy KJ (2006) Scaling behavior of fragment shapes. Phys Rev Lett 96:025504CrossRefGoogle Scholar
  59. Lentacker I, De Smedt SC, Sanders NN (2009) Drug-loaded microbubble design for ultrasound-triggered delivery. Soft Matter 5(11):2161–2170CrossRefGoogle Scholar
  60. Lohse D, Schmitz B, Versluis M (2001) Snapping shrimp make flashing bubbles. Nature 413:477CrossRefGoogle Scholar
  61. Lohse D, Bergmann R, Mikkelsen R, Zeilstra C, van der Meer D, Versluis M, van der Weele J, van der Hoef M, Kuipers J (2004) Impact on soft sand: void collapse and jet formation. Phys Rev Lett 93(19):198003–1CrossRefGoogle Scholar
  62. Longuet-Higgins S, Kerman BR, Lunde K (1991) The release of air bubbles from an underwater nozzle. J Fluid Mech 230:365zbMATHCrossRefGoogle Scholar
  63. Mach E, Mach L (1889) Weitere ballistisch-photographische Versuche. Sitzungsber Kaiserl Akad Wissenschaft Mathematisch-Naturwisenschaft Classe 98:1310–1332Google Scholar
  64. Marey EJ (1868) Determination experimentale du mouvement del ailes des insectes pendant le vol. C R Acad Sci 67:1341–1345Google Scholar
  65. Marey E (1894) Le mouvement. G. Masson, ParisGoogle Scholar
  66. Marmottant PH, Hilgenfeldt S (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423:153–156Google Scholar
  67. Martínez-Mercado J, Chehata D, van Gils D, Sun C, Lohse D (2010) J Fluid Mech 650:287–306CrossRefGoogle Scholar
  68. Martínez-Mercado J, Prakash VN, Tagawa Y, Sun C, Lohse D (2012) Lagrangian statistics of light particles in turbulence. Phys Fluids 24:055106CrossRefGoogle Scholar
  69. Meinhart C, Wereley S, Gray M (2000) Volume illumination for two-dimensional particle image velocimetry. Meas Sci Technol 11:809–814CrossRefGoogle Scholar
  70. Merzkirch W (1987) Flow visualization, 2nd edn. Academic Press, New YorkzbMATHGoogle Scholar
  71. Miles RB, Grinstead J, Kohl RH, Diskin G (2000) The RELIEF flow tagging technique and its application in engine testing facilities and for helium air mixing studies. Meas Sci Technol 11(9):1272–1281CrossRefGoogle Scholar
  72. Miller C (1949) Half-million stationary images per second with refocused revolving beams. J Soc Motion Picture Eng 53:479Google Scholar
  73. Minnaert M (1933) On musical air-bubbles and the sounds of running water. Phil Mag 16:235–248Google Scholar
  74. Mordant N, Leveque E, Pinton J (2004) Experimental and numerical study of the Lagrangian dynamics of high Reynolds turbulence. New J Phys 6:34CrossRefGoogle Scholar
  75. Murphy MJ, Adrian RJ (2010) PIV space-time resolution of flow behind blast waves. Exp Fluids 49(1):193–202Google Scholar
  76. Muybridge E, Mozley AV (1887) Human and animal locomotion. Dover, New YorkGoogle Scholar
  77. Ni R, Huang SD, Xia KQ (2012) Lagrangian acceleration measurements in convective thermal turbulence. J Fluid Mech 692:395–419zbMATHCrossRefGoogle Scholar
  78. Nooren PA, Versluis M, van der Meer TH, Barlow RS, Frank JH (2000) Raman-Rayleigh-LIF measurements of temperature and species concentrations in the Delft piloted turbulent jet diffusion flame. Appl Phys B 71:95–111CrossRefGoogle Scholar
  79. Ohl CD (2002) Cavitation inception following shock wave passage. Phys Fluids 14(10):3512–3521CrossRefGoogle Scholar
  80. Ohl CD, Kurz T, Geisler R, Lindau O, Lauterborn W (1999) Bubble dynamics, shock waves and sonoluminescence. Phil Trans R Soc A 357:269–294MathSciNetzbMATHCrossRefGoogle Scholar
  81. Ohl CD, Arora M, Ikink R, de Jong N, Versluis M, Delius M, Lohse D (2006) Sonoporation from jetting cavitation bubbles. Biophys J 91:4285–4295CrossRefGoogle Scholar
  82. Oğuz HN, Prosperetti A (1993) Dynamics of bubble-growth and detachment from a needle. J Fluid Mech 257:111CrossRefGoogle Scholar
  83. Parker V, Roberts C (2002) Rotating mirror and drum cameras. In: Ray SF (ed) High Speed Photography and Photonics, vol. PM120, Chap 10. SPIE, Bellingham, WA, pp 158–180Google Scholar
  84. Patek SN, Korff WL, Caldwell RL (2004) Biomechanics: deadly strike mechanism of a mantis shrimp. Nature 428:819–820CrossRefGoogle Scholar
  85. Pishchalnikov YA, Sapozhnikov OA, Bailey MR, Williams JJC, Cleveland RO, Colonius T, Crum LA, Evan AP, McAteer JA (2003) Cavitation bubble cluster activity in the breakage of kidney stones by lithotripter shock waves. J Endourol 17(7):435–446CrossRefGoogle Scholar
  86. Plateau JAF (1873) Statique exprimentale et thorique des liquides soumis aux seules forces molculaires, Gauthier-Villard, ParisGoogle Scholar
  87. Poelma C, Vennemann P, Lindken R, Westerweel J (2008) Exp Fluids 45(4):703–713CrossRefGoogle Scholar
  88. Poelma C, Mari JM, Foin N, Tang MX, Krams R, Caro CG, Weinberg PD, Westerweel J (2011) 3D flow reconstruction using ultrasound PIV. Exp Fluids 50:777–785CrossRefGoogle Scholar
  89. Pommer MS, Kiehl AR, Soni G, Dakessian NS, Meinhart CD (2007) Proceedings of the 2nd IEEE international conference on nano/micro engineered and molecular systemsGoogle Scholar
  90. Porta AL, Voth GA, Crawford AM, Alexander J, Bodenschatz E (2001) Fluid particle accelerations in fully developed turbulence. Nature 409:1017–1019CrossRefGoogle Scholar
  91. Prosperetti A, Crum LA, Pumphrey HC (1989) The underwater noise of rain. J Geophys Res 94:32–39 Google Scholar
  92. Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry, 2nd edn. Springer, BerlinGoogle Scholar
  93. Rayleigh L (1879) On the capillary phenomena of jets. Proc R Soc Lond 29:71CrossRefGoogle Scholar
  94. Rensen J, Luther S, Lohse D (2005) The effects of bubbles on developed turbulence. J Fluid Mech 538:153–187zbMATHCrossRefGoogle Scholar
  95. Rensen J, Luther S, de Vries J, Lohse D (2005) Hot-film anemometry in bubbly flow I: bubble probe interaction. Int J Multiphase Flow 31:285–301zbMATHCrossRefGoogle Scholar
  96. Ribarov LA, Wehrmeyer JA, Pitz RW, Yetter RA (2002) Hydroxyl tagging velocimetry (HTV) in experimental air flows. Appl Phys B 74(2):175–183CrossRefGoogle Scholar
  97. Sapozhnikov OA, Maxwell AD, MacConaghy B, Bailey MR (2007) A mechanistic analysis of stone fracture in lithotripsy. J Acoust Soc Am 121(2):1190–1202CrossRefGoogle Scholar
  98. Schouveiler L, Provansal M (2002) Self-sustained oscillations in the wake of a sphere. Phys Fluids 14:3846–3854MathSciNetCrossRefGoogle Scholar
  99. Settles GS (2001) Schlieren and Shadowgraph techniques, Springer, BerlinzbMATHCrossRefGoogle Scholar
  100. Shi XD, Brenner MP, Nagel SR (1994) A cascade of structure in a drop falling from a Faucet. Science 265(5169):219–222MathSciNetzbMATHCrossRefGoogle Scholar
  101. Sreenivasan KR, Prasad RR (1989) New results on the fractal and multifractal structure of the large Schmidt number passive scalars in fully turbulent flows. Physica D 38(1–3):322–329CrossRefGoogle Scholar
  102. Tagawa Y, Oudalov N, Visser CW, Peters I, van der Meer D, Sun C, Prosperetti A, Lohse D (2012) Highly focused supersonic microjets. Phys Rev X 2:031002CrossRefGoogle Scholar
  103. Talbot WHF (1852) On the production of instantaneous photographic images. Phil Mag 4:73–77Google Scholar
  104. Thoroddsen ST (2002) The ejecta sheet generated by the impact of a drop. J Fluid Mech 451:373–381Google Scholar
  105. Thoroddsen ST, Takehara K (2000) The coalescence-cascade of a drop. Phys Fluids 12:1265–1267Google Scholar
  106. Thoroddsen ST, Etoh TG, Takehara K (2006) Crown-breakup by Marangoni instability. J Fluid Mech 557:63–72zbMATHCrossRefGoogle Scholar
  107. Thoroddsen ST, Etoh TG, Takehara K (2007) Experiments on bubble pinch-off. Phys Fluids 19(4):042101CrossRefGoogle Scholar
  108. Tichigi Y, Hanzawa K, Kato Y, Kuroda R, Mutoh H, Hirose R, Tominaga H, Takubo K, Kondo Y, Sugawa S (2012) IEEE international solid-state circuits conference digest of technical papers, pp 382–384Google Scholar
  109. Tilton J (1999) Fluid and particle dynamics. Perrys chemical engineers handbook, vol 6.1 50Google Scholar
  110. Toschi F, Bodenschatz E (2009) Lagrangian properties of particles in turbulence. Ann Rev Fluid Mech 41(1):375–404MathSciNetCrossRefGoogle Scholar
  111. van der Bos A, Zijlstra A, Gelderblom E, Versluis M (2011) iLIF: illumination by laser-induced fluorescence for single flash imaging on a nanoseconds timescale. Exp Fluids 51:1283–1289CrossRefGoogle Scholar
  112. van Hoeve W, Gekle S, Snoeijer JH, Versluis M, Brenner MP, Lohse D (2010) Breakup of diminutive Rayleigh jets. Phys Fluids 22(12):122003CrossRefGoogle Scholar
  113. van der Meer SM, Dollet B, Chin CT, Bouakaz A, Voormolen M, de Jong N, Versluis M, Lohse D (2007) Microbubble spectroscopy of ultrasound contrast agents. J Acoust Soc Am 121(1):648–656CrossRefGoogle Scholar
  114. van der Veen RCA, Tran T, Lohse D, Sun C (2012) Direct measurements of air layer profiles under impacting droplets using high-speed color interferometry. Phys Rev E 85:026315CrossRefGoogle Scholar
  115. van Wijngaarden L (2005) Bubble velocities induced by trailing vortices behind neighbours. J Fluid Mech 541:203–229MathSciNetzbMATHCrossRefGoogle Scholar
  116. Veldhuis C, Biesheuvel A, van Wijngaarden L, Lohse D (2005) Motion and wake structure of spherical particles. Nonlinearity 18(1):C1–C8zbMATHCrossRefGoogle Scholar
  117. Verhaagen B, Boutsioukis C, Heijnen GL, van der Sluis LWM, Versluis M (2012) Role of the confinement of a root canal on jet impingement during endodontic irrigation. Exp Fluids 53:1841–1853Google Scholar
  118. Versluis M, Georgiev N, Martinsson L, Aldén M, Kröll S (1997) 2-D absolute OH concentration profiles in atmospheric flames using planar LIF in a bi-directional laser beam configuration. Appl Phys B 65:411–417CrossRefGoogle Scholar
  119. Versluis M, Schmitz B, von der Heydt A, Lohse D (2000) How snapping shrimp snap: through cavitating bubbles. Science 289:2114–2117Google Scholar
  120. Versluis M, Blom C, van der Meer D, van der Weele K, Lohse D (2006) Leaping shampoo and the stable Kaye effect. J Stat Mech 280:P07007CrossRefGoogle Scholar
  121. Versluis M, Palanchon P, Goertz D, Heitman I, van der Meer S, Dollet B, de Jong N, Lohse D (2010) Microbubble shape oscillations excited through an ultrasound-driven parametric instability. Phys Rev E 82:026321CrossRefGoogle Scholar
  122. Wamel AV, Kooiman K, Harteveld M, Emmer M, ten Cate FJ, Versluis M, Jong ND (2006) Vibrating microbubbles poking individual cells: drug transfer into cells via sonoporation. J Contr Rel 112(2):149–155CrossRefGoogle Scholar
  123. Warden SJ (2003) A new direction for ultrasound therapy in sports medicine. Sports Med 33:95–107CrossRefGoogle Scholar
  124. Wijshoff H (2010) The dynamics of the piezo inkjet printhead operation. Phys Rep 491(4–5):77–177CrossRefGoogle Scholar
  125. Worthington AM (1908) A study of splashes. Longmans Green and Co, LondonGoogle Scholar
  126. Worthington AM, Cole RS (1897) Impact with a liquid surface studied by the aid of instantaneous photography. Phil Trans R Soc Lond Ser A 189:137–148zbMATHCrossRefGoogle Scholar
  127. Worthington AM, Cole RS (1900) Impact with a liquid surface studied by the aid of instantaneous photography; Paper II. Phil Trans R Soc Lond Ser A 194:175–200CrossRefGoogle Scholar
  128. Xu L, Zhang WW, Nagel SR (2005) Drop splashing on a dry smooth surface. Phys Rev Lett 94(1–4):184505 Google Scholar
  129. Zhen X, Ludomirsky A, Eun LY, Hall TL, Tran BC, Fowlkes JB, Cain CA (2004) Controlled ultrasound tissue erosion. IEEE Trans Ultrason Ferroelec Freq Contr 51(6):726–736CrossRefGoogle Scholar
  130. Zijlstra AG, Ohl CD (2008) On fiber optic probe hydrophone measurements in a cavitating liquid. J Acoust Soc Am 123(1):29–32CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Physics of Fluids Group, MESA+ Institute of Nanotechnology, MIRA Institute of Biomedical Technology and Technical MedicineUniversity of TwenteEnschedeThe Netherlands

Personalised recommendations