Experiments in Fluids

, 54:1452 | Cite as

Shape distortions induced by convective effect on hot object in visible, near infrared and infrared bands

  • Anthony Delmas
  • Yannick Le Maoult
  • Jean-Marie Buchlin
  • Thierry Sentenac
  • Jean-José Orteu
Research Article

Abstract

The goal of this study is to examine the perturbation induced by the convective effect (or mirage effect) on shape measurement and to give an estimation of the error induced. This work explores the mirage effect in different spectral bands and single wavelengths. A numerical approach is adopted and an original setup has been developed in order to investigate easily all the spectral bands of interest with the help of a CCD camera (Si, 0.35–1.1 μm), a near infrared camera (VisGaAs, 0.8–1.7 μm) or infrared cameras (8–12 μm). Displacements due to the perturbation for each spectral band are measured and finally some hints about how to correct them are given.

References

  1. Aliev AE, Gartstein YN, Baughman RH (2011) Mirage effect from thermally modulated transparent carbon nanotube sheets. Nanotechnology 22:435704.1–435704.10Google Scholar
  2. Bing P, Dafang W, Yong X (2010) Hight-temperature deformation field measurement by combining transient aerodynamic heating simulation system and reliability-guided digital image correlation. Opt Lasers Eng 48:841–848CrossRefGoogle Scholar
  3. Bruce R (2011) Étude des échanges thermiques convectifs en paroi d’un ballon scientifique stratosphérique de type montgolfière infrarouge. Thèse ISAEGoogle Scholar
  4. Claudinon S (2000) Contribution à l’étude des distorsions au traitement thermique. Thèse Ecole des des Mines de ParisGoogle Scholar
  5. Cosson B, Schmidt F, Le Maoult Y, Bordival M (2011) Infrared heating stage simulation of semi-transparent media (PET) using ray-tracing method. Int J Mater Form 4(1):1–10CrossRefGoogle Scholar
  6. Crespy C (2009) Contribution à la mesure de champs de température bi et tri-dimensionnels par Photographie de Speckle. Application à l’estimation des flux d chaleur pariétaux. PhD thesis INSA LyonGoogle Scholar
  7. De Strycker M, Schueremans L, Van Paepegem W, Debryne D (2010) Measuring the thermal expansion coefficient of tubular steel specimens with digital image correlation techniques. Opt Lasers Eng 48:978–986CrossRefGoogle Scholar
  8. Dibrinski V, Ossadtchi A, Mandelshtam V, Reisler H (2002) Reconstruction of Able transformable images: the gaussian basis-set expansion Abel transform method. Rev Sci Instrum 73(7):2634–2642Google Scholar
  9. El Motassadeq A, Chechouani H, Waqif M, Benet S (2000) Simulation des effets de la réfraction dans la couche limite thermique au-dessus d’un disque horizontal. Congrès français de thermiqueGoogle Scholar
  10. Grant BMB, Stone HJ, Withers PJ, Preuss M (2009) High-temperature strain field measurement using digital image correlation. J Strain Anal Eng DesignGoogle Scholar
  11. Healey GE, Kondepudy R (1994) Radiometric CCD camera calibration and noise estimation. IEEE Trans Pattern Anal Machine Intell 16(3):267–276Google Scholar
  12. Herve P, Viellard L, Morel A (1997) Radiometrie: L’ultraviolet. Revue pratique de contrôle industrieGoogle Scholar
  13. Klinge F (2001) Investigation of background oriented schlieren towards a quantitative density measurement system. Project report, von Karman InstituteGoogle Scholar
  14. Klinge F (2001) Investigation of background oriented schlieren towards a quantitative density measurement system. project report 19, Von Karman InstituteGoogle Scholar
  15. Lemaitre M, Lalignant O, Blanc-Talon J, Meriaudeau F (2007) Local isoplanatism effects removal on infrared sequences. In: Proceedings of SPIE, quality control by artificial vision (QCAV) conference, France, vol 6356Google Scholar
  16. Lide DR (2007) Handbook of chemistry and physics 88th, pp 10–253, 2007–2008Google Scholar
  17. Lyons JS, Liu J, Sutton MA (1996) High-temperature deformation measurements using digital image correlation. Exp Mech 36(1):64–70Google Scholar
  18. Mayinger F, Feldmann O (2001) Optical measurements, 2nd edition. Springer, BerlinCrossRefGoogle Scholar
  19. Riethmuller ML, Tomita Y (1987) LDV and pressure measurements of gas particle flows in bends, volume 163 of technical note. Von Karman Institute for Fluid DynamicsGoogle Scholar
  20. Robinson SB, Liburdy JA (1987) Prediction of the natural convective heat transfer from a horizontal heated disk. J Heat Transf 109:906–911Google Scholar
  21. Rondeau X (2007) Imagerie à travers la turbulence : mesure inverse du front d’onde et centrage optimal, PhD thesis, Lyon UniversityGoogle Scholar
  22. Saint Laurent L, Prévost D, Maldague X (2010) Fast and accurate calibration-based thermal/colour sensors registration, QIRT 2010-126Google Scholar
  23. Scarano F, Carlomagno GM, Riethmuller ML (2000) Particle image velocimetry development and application. Von Karman Institute for Fluid DynamicsGoogle Scholar
  24. Sourgen F, Haerting J, Rey C (2003) Mesure de champ de masse volomique par Background Schlieren Displacement (BSD). Institut Franco-allemand de Recherches de Saint LuisGoogle Scholar
  25. Thorpe G, Fraser D (1996) Correction and restoration of images obtained through turbulent media. Digit Signal Process Appl:415–420Google Scholar
  26. VIC-2D, Correlated Solutions Inc., http://correlatedsolutions.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anthony Delmas
    • 1
  • Yannick Le Maoult
    • 1
  • Jean-Marie Buchlin
    • 2
  • Thierry Sentenac
    • 1
  • Jean-José Orteu
    • 1
  1. 1.Institut Clément AderUniversité de Toulouse, Mines AlbiAlbiFrance
  2. 2.Environmental and Applied Fluid Dynamics DepartmentVon Karman InstituteRhode-St-GenèseBelgium

Personalised recommendations