Advertisement

Experiments in Fluids

, Volume 53, Issue 5, pp 1327–1333 | Cite as

Measurement of permeability of microfluidic porous media with finite-sized colloidal tracers

  • Christian Scholz
  • Frank Wirner
  • Yujie Li
  • Clemens Bechinger
Research Article

Abstract

We present two methods how the permeability in porous microstructures can be experimentally obtained from particle tracking velocimetry of finite-sized colloidal particles suspended in a liquid. The first method employs additional unpatterned reference channels where the liquid flow can be calculated theoretically and a relationship between the velocity of the particles and the liquid is obtained. The second method takes advantage of a time-dependent pressure drop that leads to an exponential decrease in the particle velocity inside a porous structure. From the corresponding decay time, the permeability can be calculated independently of the particle size. Both methods lead to results comparable with permeabilities derived from numerical simulations.

Keywords

Particle Velocity Microfluidic Device Outer Segment Microfluidic Channel Particle Tracking Velocimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

We would like to thank Valentin Blickle, Hans-Jürgen Kümmerer and Gerd E. Schröder-Turk for inspiring discussions.

References

  1. Auset M, Keller AA (2004) Pore-scale processes that control dispersion of colloids in saturated porous media. Water Resour Res 40(3):W03,503CrossRefGoogle Scholar
  2. Auset M, Keller AA (2006) Pore-scale visualization of colloid straining and filtration in saturated porous media using micromodels. Water Resour Res 42(12):W12S02CrossRefGoogle Scholar
  3. Bruus H (2007) Theoretical microfluidics. Oxford University Press, OxfordGoogle Scholar
  4. Carman PC (1937) Fluid flow through granular beds. Trans Inst Chem Eng 15:150–166Google Scholar
  5. Frenkel D (2002) Soft condensed matter. Phys A Stat Mech Appl 313(1–2):1–31. doi: 10.1016/S0378-4371(02)01032-4 MathSciNetCrossRefzbMATHGoogle Scholar
  6. Katz AJ, Thompson AH (1986) Quantitative prediction of permeability in porous rock. Phys Rev B 34:8179–8181. doi: 10.1103/PhysRevB.34.8179 CrossRefGoogle Scholar
  7. Kozeny J (1927) Uber kapillare leitung des wassers im boden. Sitzber Akad Wiss Wien, Math-naturw 136:Abt. II a, p 277Google Scholar
  8. Lindken R, Rossi M, Große S, Westerweel J (2009) Micro-particle image velocimetry ([small micro]piv): recent developments, applications, and guidelines. Lab Chip 9:2551–2567. doi: 10.1039/B906558J CrossRefGoogle Scholar
  9. Loutherback K, Puchalla J, Austin RH, Sturm JC (2009) Deterministic microfluidic ratchet. Phys Rev Lett 102(4):045,301. doi: 10.1103/PhysRevLett.102.045301 CrossRefGoogle Scholar
  10. Marshall T, Holmes J, Rose C (1996) Soil physics. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  11. Ouellette NT, O’Malley PJJ, Gollub JP (2008) Transport of finite-sized particles in chaotic flow. Phys Rev Lett 101(17):174,504. doi: 10.1103/PhysRevLett.101.174504 CrossRefGoogle Scholar
  12. Quake SR, Scherer A (2000) From micro-to-nanofabrication with soft materials. Science 290(5496):1536–1540. doi: 10.1126/science.290.5496.1536 CrossRefGoogle Scholar
  13. Sahimi M (1993) Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing. Rev Mod Phys 65(4):1393–1534. doi: 10.1103/RevModPhys.65.1393 CrossRefGoogle Scholar
  14. Santiago JG, Wereley ST, Meinhart CD, Beebe DJ, Adrian RJ (1998) A particle image velocimetry system for microfluidics. Exp Fluids 25:316–319. doi: 10.1007/s003480050235 CrossRefGoogle Scholar
  15. Segre G, Silberberg A (1962) Behaviour of macroscopic rigid spheres in poiseuille flow part 2. Experimental results and interpretation. J Fluid Mech 14(01):136–157. doi: 10.1017/S0022112062001111 CrossRefGoogle Scholar
  16. Staben M, Zinchenko A, Davis R (2003) Motion of a particle between two parallel plane walls in low-reynolds-number poiseuille flow. Phys Fluids 15:1711–1711CrossRefGoogle Scholar
  17. Taylor G (1953) Dispersion of soluble matter in solvent flowing slowly through a tube. Proc Royal Soc Lond Ser Math Phys Sci 219(1137):186–203. doi: 10.1098/rspa.1953.0139 CrossRefGoogle Scholar
  18. Pushkin DO, Melnikov DE, Shevtsova VM (2011) Ordering of small particles in one-dimensional coherent structures by time-periodic flows. Phys Rev Lett 106(23):234501-1–234501-4Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Physikalisches InstitutUniversität StuttgartStuttgartGermany

Personalised recommendations