Advertisement

Experiments in Fluids

, Volume 52, Issue 1, pp 193–205 | Cite as

Horizontal bridges in polar dielectric liquids

  • Jakob Woisetschläger
  • Adam D. Wexler
  • Gert Holler
  • Mathias Eisenhut
  • Karl Gatterer
  • Elmar C. Fuchs
Research Article

Abstract

When a high-voltage direct-current is applied to two beakers filled with polar liquid dielectrica like water or methanol, a horizontal bridge forms between the two beakers. By repeating a version of Pellat’s experiment, it is shown that a horizontal bridge is stable by the action of electrohydrodynamic pressure. Thus, the static and dynamic properties of the phenomenon called a ‘floating water bridge’ can be explained by the gradient of Maxwell pressure, replenishing the liquid within the bridge against any drainage mechanism. It is also shown that a number of liquids can form stable and long horizontal bridges. The stability of such a connection, and the asymmetry in mass flow through such bridges caused by the formation of ion clouds in the vicinity of the electrodes, is also discussed by two further experiments.

Keywords

Electric Field Strength Liquid Bridge Refractive Index Change Dielectric Liquid Polar Liquid 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work was performed in the TTIW-cooperation framework of Wetsus, Centre of Excellence for Sustainable Water Technology (http://www.wetsus.nl) together with Graz University of Technology, Austria (http://www.tugraz.at). Wetsus is funded by the Dutch Ministry of Economic Affairs, the European Union Regional Development Fund, the Province of Fryslân, the City of Leeuwarden, the EZ/Kompas program of the ‘Samenwerkingsverband Noord-Nederland’ and the participating companies. The authors would like to thank the whole research team and staff of WETSUS, the Institute of Analytical Chemistry and Food Chemistry at the Graz University of Technology, especially Dr. Xinghua Guo for providing some of the solvents, and the Institute of Hydraulic Engineering and Water Resources at Graz University of Technology for sharing the Photron high-speed camera. With great pleasure, the authors furthermore wish to thank Profs. Marie-Claire Bellissent-Funel (Laboratoire Léon Brillouin, Saclay), Eshel Ben-Jacob (Tel Aviv University), Mariano Bizzarri (Università La Sapienza, Roma), Harry Bruning (Wetsus), Cees Buisman (Wetsus), Gert-Jan Euverink (Wetsus), Friedemann Freund (NASA SETI Institute, California), Emilio Del Giudice (Universitá di Milano), Ferenc Hajdu (Central Research Institute for Chemistry, Hungarian Academy of Sciences, Budapest), Franz Heitmeir (Graz University of Technology), Hideo Nishiumi (Chem. Eng. Lab., Hosei University, Japan), Laurence Noirez (Laboratoire Léon Brillouin, Saclay), Gerald H. Pollack (University of Washington), Alan Soper (Rutherford Appleton Laboratories, ISIS, Oxford), Piergiorgio Spaggiari (Istituti Ospitalieri Di Cremona, Milano, Italy), José Teixeira (Laboratoire Léon Brillouin, Saclay), Giuseppe Vitiello (Universitá degli studi di Salerno), Vladimir Voeikov (M.V. Lomonosov Moscow State University), John Watterson (Ashmore, Australia) as well as Luewton L.F. Agostinho, Cees Kamp, Astrid H. Paulitsch-Fuchs, Martina Sammer and Doekle Yntema (Wetsus) for the ongoing discussion on the water bridge phenomenon (in alphabetic order).

References

  1. Aerov AA (2011) Why the Water Bridge does not collapse. Phys Rev E 84:036314Google Scholar
  2. Armstrong LW (1893) Electrical phenomena. The Electrical Engineer, pp 154–155, 10 February 1893Google Scholar
  3. Briere GB (1964) Electrical conduction in purified polar liquids. Br J Appl Phys 15(4):413–417CrossRefGoogle Scholar
  4. Burcham CL, Saville DA (2000) Electrohydrodynamic stability of a liquid bridge: Microgravity experiments on a liquid bridge suspended in a dielectric gas. J Fluid Mech 405:37–56CrossRefzbMATHGoogle Scholar
  5. Burcham CL, Saville DA (2002) Electrohydrodynamic stability: Taylor-Melcher theory for a liquid bridge suspended in a dielectric gas. J Fluid Mech 452:163–187CrossRefzbMATHGoogle Scholar
  6. Del Giudice E, Fuchs EC, Vitiello G (2010) Collective molecular dynamics of a floating water bridge. WATER (Seattle) 2:69–82Google Scholar
  7. Eisenhut M, Guo X, Paulitsch-Fuchs AH, Fuchs EC (2011) Aqueous phenol and ethylene glycol solutions in electrohydrodynamic liquid bridging. Cent Eur J Chem 9(3):391–403CrossRefGoogle Scholar
  8. Fuchs EC (2010) Can a century old experiment reveal hidden properties of water? Water (MDPI) 2:381–410CrossRefGoogle Scholar
  9. Fuchs EC, Woisetschläger J, Gatterer K, Maier E, Pecnik R, Holler G, Eisenkölbl H (2007) The floating water bridge. J Phys-D-Appl Phys 40:6112–6114CrossRefGoogle Scholar
  10. Fuchs EC, Gatterer K, Holler G, Woisetschläger J (2008) Dynamics of the floating water bridge. J Phys-D-Appl Phys 41:185502–185507CrossRefGoogle Scholar
  11. Fuchs EC, Bitschnau B, Woisetschläger J, Maier E, Beuneu B, Teixeira J (2009) Neutron scattering of a floating heavy water bridge. J Phys-D-Appl Phys 42:065502:1–065502:4Google Scholar
  12. Fuchs EC, Agostinho LLF, Eisenhut M, Woisetschläger J (2010a) Mass and charge transfer within a floating water bridge, Laser Applications in Life Sciences. Proc SPIE 7376:1E1–1E15Google Scholar
  13. Fuchs EC, Baroni P, Bitschnau B, Noirez L (2010b) Two-dimensional neutron scattering in a floating heavy water bridge. J Phys-D-Appl Phys 43:105502:1–105502:5Google Scholar
  14. Fuchs EC, Agostinho LLF, Wexler A, Wagterveld RM, Tuinstra J, Woisetschläger J (2011a) The behaviour of a floating water bridge under reduced gravity conditions. J Phys-D-Appl Phys 44:025501CrossRefGoogle Scholar
  15. Fuchs EC, Bitschnau B, Di Fonzo S, Gessini A Woisetschläger J, and Bencivenga F (2011b) Inelastic UV scattering in a floating water bridge. J Phys Sc Appl 1(3) (in press)Google Scholar
  16. Gonzalez H, McCluskey FMJ, Castellanos A, Barrero A (1989) Stabilization of dielectric liquid bridges by electric fields in the absence of gravity. J Fluid Mech 206:545CrossRefzbMATHGoogle Scholar
  17. Hipp M, Woisetschläger J, Reiterer P, Neger T (2004) Digital evaluation of interferograms. Measurement 36:53–66CrossRefGoogle Scholar
  18. Ho PP, Alfano RR (1979) Optical Kerr effect in liquids. Phys Rev A 20:2170–2187CrossRefGoogle Scholar
  19. Hülsheger H, Potel J, Niemann EG (1983) Electric field effects on bacteria and yeast cells. Radiat Environ Biophys 22:149–162CrossRefGoogle Scholar
  20. Jeong SI, Seyed-Yagoobi J (2003) Theoretical/numerical study of electrohydrodynamic pumping through conduction phenomenon. IEEE Trans Ind Appl 39:355–361CrossRefGoogle Scholar
  21. Jeong SI, Seyed-Yagoobi J (2004) Fluid circulation in an enclosure generated by electrohydrodynamic conduction phenomenon. IEEE Trans Dielectrics Electrical Insul 11:899–910CrossRefGoogle Scholar
  22. Jones TB (2002) On the relationship of dielectrophoresis and electrowetting. Langmuir 18:4437–4443CrossRefGoogle Scholar
  23. Kendall J (1916) The specific conductivity of pure water in equilibrium with atmospheric carbon dioxide. J Am Chem Soc 38:1480–1497CrossRefGoogle Scholar
  24. Marin AG, Lohse D (2010) Building water bridges in air; electrohydrodynamics of the floating water bridge. Phys Fluids 22:122104CrossRefGoogle Scholar
  25. Melcher JR(1981) Continuum Electromechanics. Cambridge, MA: MIT Press, 1981. Copyright Massachusetts Institute of Technology. ISBN: 9780262131650. Also available online from MIT OpenCourseWare at http://ocw.mit.edu (accessed 01 19, 2011) under creative commons license attribution-noncommercial-share alike
  26. Melcher JR, Taylor GI (1969) Electrohydrodynamics: A Review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1:111–146CrossRefGoogle Scholar
  27. Melcher JR, Warren EP (1971) Electrohydrodynamics of a current carrying semi-insulating jet. J Fluid Mech 47:127–143 (2 plates)CrossRefGoogle Scholar
  28. Nishiumi H, Honda F (2009) Effects of electrolyte on floating water bridge. Res Let Phys Chem. doi: 10.1155/2009/371650
  29. Onsager L (1934) Deviations from Ohm’s law in weak electrolytes. J Chem Phy 2(9):599–615CrossRefGoogle Scholar
  30. Pellat H (1896) Mesure de la force agissant sur les diélectriques liquides non électrisés placés dans un champ élitrique. C R Acad Sci Paris 123:691–696Google Scholar
  31. Pickard WF (1962) An explanation of the de sumo to effect. J Appl Phys 33:941–942CrossRefGoogle Scholar
  32. Pohl HA (1958) Some effects of nonuniform fields on dielectrics. J Appl Phys 29(8):1182–1188CrossRefGoogle Scholar
  33. Ponterio RC, Pochylski M, Aliotta F, Vasi C, Fontanella ME, Saija F (2010) Raman scattering measurements on a floating water bridge. J Phys-D-Appl Phys 43:1754051–1754058Google Scholar
  34. Raco RJ (1968) Electrically supported column of liquid. Science 160(3825):311–312CrossRefGoogle Scholar
  35. Ramos A, Castellanos A (1993) Bifurcation diagrams of axisymetric liquid bridges of arbitrary volume in electric and gravitational axial fields. Phys Fluids 6:207–225Google Scholar
  36. Riddick JA, Bunger WB (1989) Organic solvents: Physical properties and methods of purification. Wiley, New York. ISBN 978-0471-08467-9Google Scholar
  37. Saija F, Aliotta F, Fontanella ME, Pochylski M, Salvato G, Vasi C, Ponterio RC (2010) Communication: an extended model of liquid bridging. J Chem Phys 133:081104CrossRefGoogle Scholar
  38. Saville DA (1997) Electrohydrodynamics: The Taylor-Melcher Leaky dielectric model. Ann Rev Fluid Mech 29:27–64CrossRefMathSciNetGoogle Scholar
  39. Sumoto I (1955) An interesting phenomenon observed on some dielectrics. J Phys Soc Jpn 10(6):494CrossRefGoogle Scholar
  40. Watson PK (1998) Conduction, instabilities and breakdown in liquid dielectrics. In: Castellanos A (ed) Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No. 380. Springer, Wien. ISBN 3-211-83137-1Google Scholar
  41. Widom A, Swain J, Silverberg J, Sivasubramanian S, Srivastava YN (2009) Theory of the Maxwell pressure tensor and the tension in a water bridge. Phys Rev E 80:016301:1–016301:7CrossRefGoogle Scholar
  42. Wohlfarth CH (ed) (2008) SpringerMaterials—The Landolt-Börnstein Database (http://www.springermaterials.com). Springer, Berlin, Heidelberg, doi: 10.1007/978-3-540-75508-1_31
  43. Woisetschläger J, Gatterer K, Fuchs EC (2010) Experiments in a floating water bridge. Exp Fluids 48–1:121–131CrossRefGoogle Scholar
  44. Zhakin AJ (1998) Conduction phenomena in dielectric liquids. In: Castellanos A (ed) Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No. 380. Springer, Wien. ISBN 3-211-83137-1Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Jakob Woisetschläger
    • 1
  • Adam D. Wexler
    • 2
  • Gert Holler
    • 3
  • Mathias Eisenhut
    • 4
  • Karl Gatterer
    • 5
  • Elmar C. Fuchs
    • 2
  1. 1.Experimental Turbomachinery Research and Optical Measurement Group, Institute for Thermal Turbomachinery and Machine DynamicsGraz University of TechnologyGrazAustria
  2. 2.Wetsus, Center of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
  3. 3.Institute of Electrical Measurement and Measurement Signal ProcessingGraz University of TechnologyGrazAustria
  4. 4.Institute of Analytical Chemistry and Food ChemistryGraz University of TechnologyGrazAustria
  5. 5.Institute of Physical and Theoretical ChemistryGraz University of TechnologyGrazAustria

Personalised recommendations