Experiments in Fluids

, Volume 53, Issue 1, pp 51–76 | Cite as

Quantifying the dynamics of flow within a permeable bed using time-resolved endoscopic particle imaging velocimetry (EPIV)

  • G. Blois
  • G. H. Sambrook Smith
  • J. L. Best
  • R. J. Hardy
  • J. R. Lead
Research article

Abstract

This paper presents results of an experimental study investigating the mean and temporal evolution of flow within the pore space of a packed bed overlain by a free-surface flow. Data were collected by an endoscopic PIV (EPIV) technique. EPIV allows the instantaneous velocity field within the pore space to be quantified at a high spatio-temporal resolution, thus permitting investigation of the structure of turbulent subsurface flow produced by a high Reynolds number freestream flow (Res in the range 9.8 × 103–9.7 × 104). Evolution of coherent flow structures within the pore space is shown to be driven by jet flow, with the interaction of this jet with the pore flow generating distinct coherent flow structures. The effects of freestream water depth, Reynolds and Froude numbers are investigated.

Supplementary material

Online Resource 1 Sequence of images of instantaneous flow fields showing the evolution of flow driven by a downstream jet leading to formation of a vortical pathway. Supplementary material 1 (AVI 22777 kb)

Online Resource 2 Sequence of images of instantaneous flow fields showing the evolution of flow triggered by a spanwise jet leading to formation of a large vortical structure, whose evolution is driven by fluid motion that is first downstream and then upstream. Supplementary material 2 (AVI 6537 kb)

348_2011_1198_MOESM3_ESM.jpg (13.7 mb)
High resolution of figure 4 (JPEG 13.7 MB)
348_2011_1198_MOESM4_ESM.jpg (10.5 mb)
High resolution of figure 12 (JPEG 10.5 MB)
348_2011_1198_MOESM5_ESM.jpg (10.3 mb)
High resolution of figure 13 (JPEG 10.3 MB)
348_2011_1198_MOESM6_ESM.jpg (4.6 mb)
High resolution of figure 14 (JPEG 4.57 MB)

References

  1. Adrian RJ (2007) Hairpin vortex organization in wall turbulence. Phys Fluids 19:041301. doi:10.1063/1.2717527 CrossRefGoogle Scholar
  2. Adrian RJ, Christensen KT, Liu ZC (2000) Analysis and interpretation of instantaneous turbulent velocity fields. Exp Fluids 29(3):275–290. doi:10.1007/s003489900087 CrossRefGoogle Scholar
  3. Arthur JK, Ruth DW, Tachie MF (2009) PIV measurements of flow through a model porous medium with varying boundary conditions. J Fluid Mech 629:343–374. doi:10.1017/S0022112009006405 MATHCrossRefGoogle Scholar
  4. Best JL, Kirkbride A, Peakall J (2001) Mean flow and turbulence structure in sediment-laden gravity currents: new insights using ultrasonic Doppler velocity profiling. In: McCaffrey WD, Kneller BC, Peakall J (eds) Particulate gravity currents, special publication of the international association of sedimentologists, vol 31. Blackwell Science, Oxford, UK, pp 159–172. doi:10.1002/9781444304275.ch12
  5. Dierksheide U, Meyer P, Hovestadt T, Hentschel W (2002) Endoscopic 2D particle image velocimetry (PIV) flow field measurements in IC engines. Exp Fluids 33:794–800. doi:10.1017/S0022112009006405 Google Scholar
  6. Dybbs A, Edwards RV (1984) A new look at porous media fluid mechanics. Darcy to turbulent. In: Bear J, Corapcioglu MY (eds) Fundamentals of transport phenomena in porous media. Martinus Nijhoff Publisher, NATO ASI Series, Series EGoogle Scholar
  7. Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43:823–858. doi:10.1007/s00348-007-0383-2 CrossRefGoogle Scholar
  8. Forchheimer P (1901) Wasserbeweguing durch Boden. Z Ver Deutsch Ing 45:1782–1788Google Scholar
  9. Goharzadeh A, Khalili A, Jørgensen BB (2005) Transition layer thickness at a fluid-porous interface. Phys Fluids 17:057102. doi:10.1063/1.1894796 CrossRefGoogle Scholar
  10. Hart DP (2000) PIV error correction. Exp Fluids 29(1):13–22. doi:10.1007/s003480050421 CrossRefGoogle Scholar
  11. Hassan YA, Dominguez-Ontiveros EE (2008) Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nucl Eng Des 238(11):3080–3085. doi:10.1016/j.nucengdes.2008.01.027 CrossRefGoogle Scholar
  12. Heenan AF, Matida E, Pollard A, Finlay WH (2003) Experimental measurements and computational modeling of the flow field in an idealized human oropharynx. Exp Fluids 35(1):70–84. doi:10.1007/s00348-003-0636-7 CrossRefGoogle Scholar
  13. Hlushkou D, Tallarek U (2006) Transition from creeping via viscous-inertial to turbulent flow in fixed beds. J Chromatogr 1126:70–85. doi:10.1016/j.chroma.2006.06.011 CrossRefGoogle Scholar
  14. Huang AYL, Huang MYF, Capart H, Chen R-H (2008) Optical measurements of pore geometry and fluid velocity in a bed of irregularly packed sphere. Exp Fluids 45:309–321. doi:10.1007/s00348-008-0480-x CrossRefGoogle Scholar
  15. Jolls KR, Hanratty TJ (1966) Transition to turbulence for flow through a dumped bed of spheres. Chem Eng Sci 21:1185–1190CrossRefGoogle Scholar
  16. Khalili A, Basu AJ, Pietrzyk U, Raffel M (1999) An experimental study of recirculating flow through fluid-sediment interfaces. J Fluid Mech 383:229–247MATHCrossRefGoogle Scholar
  17. Klar M, Jehle M, Jahne B, Detert M, Jirka GH, Kohler HJ, Wenka T (2004) Simultaneous 3-D PTV and micro-pressure sensor equipment for flow analysis in a subsurface gravel layer. In: Greco M, Carravetta A, Della Morte R (eds) Proceedings of the 2nd international conference on fluvial hydraulics. Napoli, Italy, pp 703–712Google Scholar
  18. Masuoka T, Takatsu Y, Inoue T (2002) Chaotic behavior and transition to turbulence in porous media. Nanoscale Microscale Thermophys Eng 6(4):347–357. doi:10.1080/10893950290098377 Google Scholar
  19. Mickley HS, Smith KA, Korchak EI (1965) Fluid flow in packed beds. Chem Eng Sci 20:237–246CrossRefGoogle Scholar
  20. Morad MR, Khalili A (2009) Transition layer thickness in a fluid-porous medium of multi-sized spherical beads. Exp Fluids 46:323–330. doi:10.1007/s00348-008-0562-9 CrossRefGoogle Scholar
  21. Moroni M, Cushman JH (2001) Statistical mechanics with three-dimensional particle tracking velocimetry experiments in the study of anomalous dispersion. II. Experiments. Phys Fluids 13:81. doi:10.1063/1.1328076 CrossRefGoogle Scholar
  22. Nield DA, Bejan A (2006) Convection in porous media, 3rd edn. Springer, New York. ISBN 978-0387-29096-6Google Scholar
  23. Packman AI, Salehin M, Zaramella M (2004) Hyporheic exchange with gravel beds: basic hydrodynamic interactions and bedform-induced advective flows. J Hydraul Eng 130(7):647–656. doi:10.1061/(ASCE)0733-9429(2004)130:7(647) CrossRefGoogle Scholar
  24. Pokrajac D, Manes C (2009) Velocity measurements of a free-surface turbulent flow penetrating a porous medium composed of uniform-size spheres. Transp Porous Med 78:367–383. doi:10.1007/s11242-009-9339-8 CrossRefGoogle Scholar
  25. Pokrajac D, Manes C, McEwan I (2007) Peculiar mean velocity profiles within a porous bed of an open channel. Phys Fluids 19:098109. doi:10.1063/1.2780193 CrossRefGoogle Scholar
  26. Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle image velocimetry: a practical guide, 2nd edn. Springer, BerlinGoogle Scholar
  27. Reeves M, Lawson NJ (2004) Evaluation and correction of perspective errors in endoscopic PIV. Exp Fluids 36(5):701–705. doi:10.1007/s00348-003-0746-2 CrossRefGoogle Scholar
  28. Seguin D, Montillet A, Comiti J, Huett F (1998) Experimental characterization of flow regimes in various porous media-II: Transition to turbulent regime. Chem Eng Sci 53(22):3897–3909. doi:10.1016/S0009-2509(98)80003-1 CrossRefGoogle Scholar
  29. Soloff SM, Adrian RJ, Liu Z-C (1997) Distortion compensation for generalised stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1454. doi:10.1088/0957-0233/8/12/008 CrossRefGoogle Scholar
  30. Stoesser T, Rodi W (2007) Large eddy simulation of open-channel flow over spheres. High Performan Comput Sci Eng 4:321–330. doi:10.1007/978-3-540-36183-1_23 Google Scholar
  31. Tani N, Kondo H, Mori M, Hishida K, Maeda M (2002) Development of fiberscope PIV system by controlling diode laser illumination. Exp Fluids 33:752–758. doi:10.1007/s00348-002-0517-5 Google Scholar
  32. Wernet MP (2000) Development of digital particle imaging velocimetry for use in turbomachinery. Exp Fluids 28(2):97–115. doi:10.1007/s003480050015 CrossRefGoogle Scholar
  33. Westerweel J (1994) Efficient detection of spurious vectors in particle image velocimetry data. Exp Fluids 16:236–247. doi:10.1007/BF00206543 CrossRefGoogle Scholar
  34. White BL, Nepf HM (2007) Shear instability and coherent structures in shallow flow adjacent to a porous layer. J Fluid Mech 593:1–32. doi:10.1017/S0022112007008415 MATHCrossRefGoogle Scholar
  35. Yevseyev AR, Nakoryakov VE, Romanov NN (1991) Experimental investigation of a turbulent filtrational flow. Int J Multiphase Flow 17(1):103–118. doi:10.1016/0301-9322(91)90073-C MATHCrossRefGoogle Scholar
  36. Zachos A, Kaiser M, Merzkirch W (1996) PIV measurements in multiphase flow with nominally high concentration of the solid phase. Exp Fluids 20:229–231. doi:10.1007/BF00190280 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • G. Blois
    • 1
    • 2
  • G. H. Sambrook Smith
    • 1
  • J. L. Best
    • 3
  • R. J. Hardy
    • 4
  • J. R. Lead
    • 1
  1. 1.School of Geography, Earth and Environmental SciencesUniversity of BirminghamBirminghamUK
  2. 2.Department of Mechanical Science and EngineeringUniversity of IllinoisUrbanaUSA
  3. 3.Departments of Geology, Geography, Mechanical Science and Engineering, and Ven Te Chow Hydrosystems LaboratoryUniversity of IllinoisUrbanaUSA
  4. 4.Department of Geography, Science LaboratoriesDurham UniversityDurhamUK

Personalised recommendations