A study of the three-dimensional spectral energy distribution in a zero pressure gradient turbulent boundary layer Research Article First Online: 24 May 2011 Received: 13 January 2011 Revised: 19 April 2011 Accepted: 30 April 2011 DOI :
10.1007/s00348-011-1117-z

Cite this article as: LeHew, J., Guala, M. & McKeon, B.J. Exp Fluids (2011) 51: 997. doi:10.1007/s00348-011-1117-z
19
Citations
485
Downloads
Abstract Time-resolved particle image velocimetry (PIV) measurements performed in wall parallel planes at three wall normal locations, y ^{+} = 34, 108, and 278, in a zero pressure gradient turbulent boundary layer at Re _{τ} = 470 are used to illuminate the distribution of streamwise velocity fluctuations in a three-dimensional energy spectrum (2D in space and 1D in time) over streamwise, spanwise, and temporal wavelengths. Two high-speed cameras placed side by side in the streamwise direction give a 10δ × 5δ streamwise by spanwise field of view with a vector spacing of \(\Updelta x^+ = \Updelta z^+ \approx 37\) and a time step of \(\Updelta t^+=0.5\) . Although 3D wavenumber--frequency spectra have been calculated in acoustics studies, to the authors’ knowledge this is the first time they has been calculated and presented for a turbulent boundary layer. The calculation and normalization of this spectrum, its relation to 2D and 1D spectra, and the effects of the PIV algorithm on its shape are carefully analyzed and outlined.

M. Guala worked on this project at the California Institute of Technology but is currently at the University of Minnesota.

References Adrian RJ (1988) Statistical properties of particle image velocimetry measurement in turbulent flow. In: Laser anemometry in fluid mechanics III, pp 115–129

Balakumar BJ, Adrian RJ (2007) Large- and very-large-scale motions in channel and boundary-layer flows. Philos Trans R Soc A 365:665–681

MATH CrossRef Google Scholar Bobba KM (2004) Robust flow stability: theory, computations and experiments in near wall turbulence. PhD thesis, California Institute of Technology

Chung D, McKeon BJ (2010) Large-eddy simulation of large-scale structures in long channel flow. J Fluid Mech 661:341–364

MATH CrossRef Google Scholar DeGraaff DB, Eaton JK (2000) Reynolds-number scaling of the flat-plate turbulent boundary layer. J Fluid Mech 422:319–346

MATH CrossRef Google Scholar del Álamo JC, Jiménez J (2001) Direct numerical simulation of the very large anisotropic scales in a turbulent channel. Cent Turbul Res Annu Res Briefs 2001:329–341

Google Scholar del Álamo JC, Jiménez J (2009) Estimation of turbulent convection velocities and corrections to Taylor’s approximation. J Fluid Mech 640:5–26

MathSciNet MATH CrossRef Google Scholar Dennis DJC, Nickels TB (2008) On the limitations of Taylor’s hypothesis in constructing long structures in a turbulent boundary layer. J Fluid Mech 614:197–206

MathSciNet MATH CrossRef Google Scholar Erm LP, Joubert PN (1991) Low-Reynolds-number turbulent boundary layers. J Fluid Mech 230:1–44

CrossRef Google Scholar Flores O, Jiménez J (2006) Effect of wall-boundary disturbances on turbulent channel flows. J Fluid Mech 566:357–376

MATH CrossRef Google Scholar Foucaut JM, Carlier J, Stanislas M (2004) PIV optimization for the study of turbulent flow using spectral analysis. Meas Sci Tech 15:1046–1058

CrossRef Google Scholar Ganapathisubramani B, Longmire EK, Marusic I (2003) Characteristics of vortex packets in turbulent boundary layers. J Fluid Mech 478:35–46

MATH CrossRef Google Scholar Goldschmidt V, Young M, Ott E (1981) Turbulent convective velocities (broadband and wavenumber dependent) in a plane jet. J Fluid Mech 105:327–345

CrossRef Google Scholar Guala M, Metzger M, McKeon BJ (2011) Interactions within the turbulent boundary layer at high Reynolds number. J Fluid Mech 666:573–604

CrossRef Google Scholar Hutchins N, Marusic I (2007) Large-scale influences in near-wall turbulence. Philos Trans R Soc A 365:647–664

MATH CrossRef Google Scholar Jacobi I, McKeon BJ (2011) Dynamic spatially-impulsive roughness perturbation of a turbulent boundary layer and the excitation of ‘critical layer’ velocity modes (submitted)

Jacobi I, Guala M, McKeon BJ (2010) Characteristics of a turbulent boundary layer perturbed by spatially-impulsive dynamic roughness. AIAA-2010-4474

Jiménez J, del Álamo JC, Flores O (2004) The large-scale dynamics of near-wall turbulence. J Fluid Mech 505:179–199

MathSciNet MATH CrossRef Google Scholar Keane RD, Adrian RJ (1990) Optimisation of particle image velocimeters-part I: double pulsed systems. Meas Sci Technol 1:1202–1215

CrossRef Google Scholar Kim J, Hussain F (1993) Propagation velocity of perturbations in turbulent channel flow. Phys Fluids A 5(3):695–706

CrossRef Google Scholar Kim KC, Adrian RJ (1999) Very large-scale motion in the outer layer. Phys Fluids 11(2):417–422

MathSciNet MATH CrossRef Google Scholar Krogstad PA, Kaspersen JH, Rimestad S (1998) Convection velocities in a turbulent boundary layer. Phys Fluids 10(4):949–957

CrossRef Google Scholar LeHew J, Guala M, McKeon BJ (2010) A study of convection velocities in a zero pressure gradient turbulent boundary layer. AIAA-2010-4474

McKeon BJ, Sharma AS (2010) A critical layer model for turbulent pipe flow. J Fluid Mech 658:336–382

MathSciNet MATH CrossRef Google Scholar Monty JP, Chong MS (2009) Turbulent channel flow: comparison of streamwise velocity data from experiments and direct numerical simulation. J Fluid Mech 633:461–474

MATH CrossRef Google Scholar Monty JP, Hutchins N, Ng HCH, Marusic I, Chong MS (2009) A comparison of turbulent pipe, channel and boundary layer flows. J Fluid Mech 632:431–442

MATH CrossRef Google Scholar Morrison WRB, Kronauer RE (1969) Structural similarity for fully developed turbulence in smooth tubes. J Fluid Mech 39:117–141

CrossRef Google Scholar Morrison WRB, Bullock KJ, Kronauer RE (1971) Experimental evidence of waves in the sublayer. J Fluid Mech 47:639–656

CrossRef Google Scholar Spalding DB (1961) A single formula for the law of the wall. Trans ASME E 28:455–458

MATH Google Scholar Taylor GI (1938) The spectrum of turbulence. Proc R Soc Lond A 164:476–490

CrossRef Google Scholar Tomkins CD, Adrian RJ (2005) Energetic spanwise modes in the logarithmic layer of a turbulent boundary layer. J Fluid Mech 545:141–162

MATH CrossRef Google Scholar Wernet MP (2007) Temporally resolved PIV for space-time correlations in both cold and hot jet flows. Meas Sci Technol 18:1387–1403

CrossRef Google Scholar Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

CrossRef Google Scholar Authors and Affiliations 1. Graduate Aerospace Laboratories California Institute of Technology Pasadena USA 2. Department of Civil Engineering University of Minnesota Minneapolis USA