Experiments in Fluids

, Volume 51, Issue 2, pp 543–551 | Cite as

Application of Particle Image Velocimetry and Reference Image Topography to jet shock cells using the hydraulic analogy

  • Vaibhav Kumar
  • Ivan Ng
  • Gregory J. Sheard
  • Eric Brocher
  • Kerry Hourigan
  • Andreas Fouras
Research Article


This paper examines the shock cell structure, vorticity and velocity field at the exit of an underexpanded jet nozzle using a hydraulic analogy and the Reference Image Topography technique. Understanding the flow in this region is important for the mitigation of screech, an aeroacoustic problem harmful to aircraft structures. Experiments are conducted on a water table, allowing detailed quantitative investigation of this important flow regime at a greatly reduced expense. Conventional Particle Image Velocimetry is employed to determine the velocity and vorticity fields of the nozzle exit region. Applying Reference Image Topography, the wavy water surface is reconstructed and when combined with the hydraulic analogy, provides a pressure map of the region. With this approach subtraction of surfaces is used to highlight the unsteady regions of the flow, which is not as convenient or quantitative with conventional Schlieren techniques. This allows a detailed analysis of the shock cell structures and their interaction with flow instabilities in the shear layer that are the underlying cause of jet screech.


Vortex Particle Image Velocimetry Shear Layer Nozzle Exit Reference Object 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alkislar MB, Krothapalli A, Lourenco LM (2003) Structure of a screeching rectangular jet: a stereoscopic particle image velocimetry study. J Fluid Mech 489:121–154zbMATHCrossRefGoogle Scholar
  2. Alkislar MB, Krothapalli A, Butler GW (2007) The effect of streamwise vortices on the aeroacoustics of a Mach 0.9 jet. J Fluid Mech 578:139–169. doi: 10.1017/S0022112007005022 zbMATHCrossRefGoogle Scholar
  3. Black J, Mediratta OP (1951) Supersonic flow investigation with a “hydraulic analogy” water channel. Aeronaut Q 2:227–253Google Scholar
  4. Brocher E, Makhsud A (1997) A new look at the screech tone mechanism of underexpanded jets. Eur J Mech B/Fluids 16(6):877–891zbMATHGoogle Scholar
  5. Buchanan A, Macartney R, Thompson MC, Brocher E, Hourigan K (2007) Hydraulic analogy study of supersonic rectangular-jet screech control with cylinders. AIAA J 45(7):1539–1545. doi: 10.2514/1.26714 CrossRefGoogle Scholar
  6. Chandrasekhar S (1961) Hydrodynamic and hydromagnetic stability. Clarendon Press, OxfordzbMATHGoogle Scholar
  7. Chatterjee A, Ghodake D, Singh A (2009) Screech frequency prediction in underexpanded axisymmetric screeching jets. Int J Aeroacoust 8(5):499–510. doi: 10.1260/147547209788549307 CrossRefGoogle Scholar
  8. Drazin PG (1970) Kelvin-Helmholtz instability of finite amplitude. J Fluid Mech 42(2):321–335. doi: 10.1017/S0022112070001295 zbMATHCrossRefGoogle Scholar
  9. Fouras A, Soria J (1998) Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp Fluids 25(5–6):409–430. doi: 10.1007/s003480050248 CrossRefGoogle Scholar
  10. Fouras A, Hourigan K, Kawahashi M, Hirahara H (2006) An improved, free surface, topographic technique. J Vis 9(1):49–56CrossRefGoogle Scholar
  11. Fouras A, Lo Jacono D, Hourigan K (2008) Target-free stereo PIV: a novel technique with inherent error estimation and improved accuracy. Exp Fluids 44(2):317–329. doi: 10.1007/s00348-007-0404-1 CrossRefGoogle Scholar
  12. Fouras A, Lo Jacono D, Sheard GJ, Hourigan K (2008) Measurement of instantaneous velocity and surface topography in the wake of a cylinder at low Reynolds number. J Fluids Struct 24(8):1271–1277CrossRefGoogle Scholar
  13. Giordano DD, Fleeter S (1992) Investigation of oscillating airfoil shock phenomena. J Phys III 2(4):595–612Google Scholar
  14. Ho C, Huang L (1982) Subharmonics and vortex merging in mixing layers. J Fluid Mech 119:443–473. doi: 10.1017/S0022112082001438 CrossRefGoogle Scholar
  15. Jähne B, Klinke J, Waas S (1994) Imaging of short ocean wind waves: a critical theoretical review. J Opt Soc Am A 11(8):2197–2209. doi: 10.1364/JOSAA.11.002197 CrossRefGoogle Scholar
  16. Jaw SY, Chen JH, Wu PC (2009) Measurement of pressure distribution from PIV experiments. J Vis 12(1):27–35. doi: 10.1007/BF03181940 CrossRefGoogle Scholar
  17. Jouguet E (1920) Some problems in general hydrodynamics. J Math Pures Appl (Series 8) 31Google Scholar
  18. Kurbatskii KA (2010) Numerical simulation of axisymmetric jet screech tones using a general purpose finite-volume CFD code. In: 48th AIAA aerospace sciences meeting including the new horizons forum and aerospace exposition, Orlando, FloridaGoogle Scholar
  19. Kuroda C, Ogawa K (1987) Static pressure-velocity field in a turbulent jet. AIChE J 33(3):519–523. doi: 10.1002/aic.690330322 CrossRefGoogle Scholar
  20. Liow YSK, Tan BT, Thompson MC, Hourigan K (2006) Sound generated in laminar flow past a two-dimensional rectangular cylinder. J Sound Vib 295(1-2):407–427. doi: 10.1016/j.jsv.2006.01.014 CrossRefGoogle Scholar
  21. Liu J, Kailasanath K, Ramamurti R, Munday D, Gutmark E, Lohner R (2009) Large-eddy simulations of a supersonic jet and its near-field acoustic properties. AIAA J 47(8):1849–1865. doi: 10.2514/1.43281 CrossRefGoogle Scholar
  22. Mach E (1887) Photography of projectile phenomena in air. Sitzungberichte der Wiener Akademie 95:164Google Scholar
  23. Menshov I, Semenov I, Ahmedyanov I, Ibrahim MK, Nakamura Y (2009) Towards understanding the physics of supersonic jet screech. In: Choi H, Choi HG, Yoo JY (eds) Computational fluid dynamics 2008. Springer, Berlin, pp 101–106 doi: 10.1007/978-3-642-01273-0
  24. Moisy F, Rabaud M, Salsac K (2009) A synthetic schlieren method for the measurement of the topography of a liquid interface. Exp Fluids 46(6):1021–1036. doi: 10.1007/s00348-008-0608-z CrossRefGoogle Scholar
  25. Morris PJ, Giridharan MG, Lilley GM (1990) On the turbulent mixing of compressible free shear layers. Proc Roy Soc Lond A 431:219–243. doi: 10.1098/rspa.1990.0128 zbMATHCrossRefGoogle Scholar
  26. Ng I, Kumar V, Sheard GJ, Hourigan K, Fouras A (2010) Surface topography of jet shock cells in a hydraulic analogy. J Vis 13(3):175–176. doi: 10.1007/s12650-010-0032-3 CrossRefGoogle Scholar
  27. Ng I, Kumar V, Sheard GJ, Hourigan K, Fouras A (2011) Experimental study of simultaneous measurement of velocity and surface topography: In the wake of a circular cylinder at low Reynolds number. Exp Fluids 50(3):587–595. doi: 10.1007/s00348-010-0960-7 Google Scholar
  28. Norum TD (1983) Screech suppression in supersonic jets. AIAA J 21(2):235–240CrossRefGoogle Scholar
  29. Panda J (1998) Shock oscillation in underexpanded screeching jets. J Fluid Mech 363:173–198. doi: 10.1017/S0022112098008842 zbMATHCrossRefGoogle Scholar
  30. Panda J (1999) An experimental investigation of screech noise generation. J Fluid Mech 378:71–96. doi: 10.1017/S0022112098003383 CrossRefGoogle Scholar
  31. Ponton MK, Seiner JM (1992) The effects of nozzle exit lip thickness on plume resonance. J Sound Vib 154(3):531–549CrossRefGoogle Scholar
  32. Powell A (1953) On the mechanism of choked jet noise. Proc Phys Soc Lond B 66:1039–1056CrossRefGoogle Scholar
  33. Powell A (1953) On the noise emanating from a two-dimensional jet above critical pressure. Aeronaut Q 4(2):103–122Google Scholar
  34. Powell A (1964) Theory of vortex sound. J Acoust Soc Am 36(1):177–195CrossRefGoogle Scholar
  35. Preiswerk E (1938) Application of the methods of gas dynamics to water flows with free surface. Tech. rep., Mitteilungen der Institut für Aerodynamik, No. 7, E.T.H. Zurich, translated as N.A.C.A. T.N. 934Google Scholar
  36. Raffel M, Willert CE, Wereley ST, Kompenhans J (2007) Particle Image Velocimetry—a practical guide, 2nd edn. Springer, BerlinGoogle Scholar
  37. Raman G (1997) Cessation of screech in underexpanded jets. J Fluid Mech 336:69–90. doi: 10.1017/S002211209600451X CrossRefGoogle Scholar
  38. Raman G (1999) Supersonic jet screech: Half-century from Powell to the present. J Sound Vib 225(3):543–571. doi: 10.1006/jsvi.1999.2181 MathSciNetCrossRefGoogle Scholar
  39. Rani SL, Wooldridge MS (2000) Quantitative flow visualization using the hydraulic analogy. Exp Fluids 28(2):165–169CrossRefGoogle Scholar
  40. Rao JS, Rao VVR, Seshadri V (1983) Hydraulic analogy for isentropic flow through a nozzle. Def Sci J 33(2):97–111Google Scholar
  41. Riabouchinsky D (1932) On the hydraulic analogy to flow of a compressible fluid. Comptes Rendus de l’Academie des Sciences 195(22):998Google Scholar
  42. Singh A, Chatterjee A (2007) Numerical prediction of supersonic jet screech frequency. Shock Waves 17(4):263–272. doi: 10.1007/s00193-007-0110-1 zbMATHCrossRefGoogle Scholar
  43. Solomon L (1967) A hydraulic analogue study of the Hartmann oscillator phenomenon. J Fluid Mech 28(2):261–271CrossRefGoogle Scholar
  44. White FM (1999) Fluid mechanics, 4th edn. McGraw-Hill, SingaporeGoogle Scholar
  45. Woodmansee MA, Iyer V, Dutton JC, Lucht RP (2004) Nonintrusive pressure and temperature measurements in an underexpanded sonic jet flowfield. AIAA J 42(6):1170–1180. doi: 10.2514/1.10418 CrossRefGoogle Scholar
  46. Zhang J, Liu N, Lu X (2009) Route to a chaotic state in fluid flow past an inclined flat plate. Phys Rev E 79(4):045,306. doi: 10.1103/PhysRevE.79.045306 Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Vaibhav Kumar
    • 1
  • Ivan Ng
    • 1
  • Gregory J. Sheard
    • 1
  • Eric Brocher
    • 2
  • Kerry Hourigan
    • 1
  • Andreas Fouras
    • 1
  1. 1.Division of Biological Engineering, Faculty of EngineeringMonash UniversityClaytonAustralia
  2. 2.Institut de Mécanique des Fluides de TretsTretsFrance

Personalised recommendations