Experiments in Fluids

, Volume 52, Issue 3, pp 555–567

High-speed laser diagnostics for the study of flame dynamics in a lean premixed gas turbine model combustor

  • Isaac Boxx
  • Christoph M. Arndt
  • Campbell D. Carter
  • Wolfgang Meier
Research Article


A series of measurements was taken on two technically premixed, swirl-stabilized methane-air flames (at overall equivalence ratios of ϕ = 0.73 and 0.83) in an optically accessible gas turbine model combustor. The primary diagnostics used were combined planar laser-induced fluorescence of the OH radical and stereoscopic particle image velocimetry (PIV) with simultaneous repetition rates of 10 kHz and a measurement duration of 0.8 s. Also measured were acoustic pulsations and OH chemiluminescence. Analysis revealed strong local periodicity in the thermoacoustically self-excited (or ‘noisy’) flame (ϕ = 0.73) in the regions of the flow corresponding to the inner shear layer and the jet-inflow. This periodicity appears to be the result of a helical precessing vortex core (PVC) present in that region of the combustor. The PVC has a precession frequency double (at 570 Hz) that of the thermo-acoustic pulsation (at 288 Hz). A comparison of the various data sets and analysis techniques applied to each flame suggests a strong coupling between the PVC and the thermo-acoustic pulsation in the noisy flame. Measurements of the stable (‘quiet’) flame (ϕ = 0.83) revealed a global fluctuation in both velocity and heat-release around 364 Hz, but no clear evidence of a PVC.


  1. Ax H, Stopper U, Meier W, Aigner M, Güthe F (2009) Experimental analysis of the combustion behaviour of a gas turbine burner by laser measurement techniques. Proc. ASME Turbo Expo, GT2009-59171Google Scholar
  2. Berkooz G, Holmes P, Lumley JL (1993) The proper orthogonal decomposition in the analysis of turbulent flows. Ann Rev Fluid Mech 25:539–575MathSciNetCrossRefGoogle Scholar
  3. Boxx I, Stöhr M, Blumenthal R, Carter C, Meier W (2009a) Investigation of a gas turbine model combustor by means of high-speed laser imaging. 47th AIAA Aerospace Sciences Meeting, AIAA 2009-644Google Scholar
  4. Boxx I, Heeger C, Gordon R, Böhm B, Dreizler A, Meier W (2009b) On the importance of temporal context in interpretation of flame discontinuities. Combust Flame 156:269–271CrossRefGoogle Scholar
  5. Boxx I, Stöhr M, Carter C, Meier W (2009c) Sustained multi-kHz flamefront and 3-component velocity-field measurements for the study of turbulent flames. Appl Phys B 95(1):23–29CrossRefGoogle Scholar
  6. Boxx I, Stöhr M, Carter C, Meier W (2009d) Temporally resolved planar measurements of transient phenomena in a partially pre-mixed swirl flame in a gas turbine model combustor. Comb Flame 157:1510–1525CrossRefGoogle Scholar
  7. Docquier N, Candel S (2002) Combustion control and sensors: a review. Prog Energy Combust Sci 28:107–150CrossRefGoogle Scholar
  8. Gord JR, Brown MS, Meyer TR (2002) Optical diagnostics for characterizing advanced combustors and pulsed-detonation engines. 22nd AIAA Aerodynamic Measurement Technology and Ground Testing Conference, AIAA 2002-3039Google Scholar
  9. Griebel P, Siewert P, Jansohn P (2007) Flame characteristics of turbulent lean premixed methane/air flames at high pressure: turbulent flame speed and flame brush thickness. Proc Combust Inst 31:3083–3090CrossRefGoogle Scholar
  10. Hardalupas Y, Orain M (2004) “Local measurement of the time-dependent heat release rate and equivalence ratio using chemiluminescence emissions from a flame”. Combust Flame 139:188–207CrossRefGoogle Scholar
  11. Hult J, Meier U, Meier W, Harvey A, Kaminski CF (2005) Experimental analysis of local flame extinction in a turbulent jet diffusion flame by high repetition 2-D laser techniques and multi-scalar measurements. Proc Combust Inst 30:701–709Google Scholar
  12. Janus B, Dreizler A, Janicka J (2007) Experiments on swirl stabilized non-premixed natural gas flames in a model gas turbine combustor. Proc Comb Inst 31:3091–3098CrossRefGoogle Scholar
  13. Kaminski CF, Hult J, Alden M (1999) High repetition rate planar laser induced fluorescence of OH in a turbulent non-premixed flame. Appl Phys B 68:757–760Google Scholar
  14. Kojima J, Nguyen QV (2004) Measurement and simulation of spontaneous Raman scattering in high-pressure fuel-rich H2–air flames. Meas Sci Technol 15:565–580CrossRefGoogle Scholar
  15. Kychakoff G, Paul PH, Cruyningen I, Hanson RK (1987) Movies and 3-D images of flowfields using planar laser-induced fluorescence. App Opt 26:2498–2500CrossRefGoogle Scholar
  16. Lee JG, Santavicca DA (2003) “Experimental diagnostics for the study of combustion instabilities in lean premixed combustors”. J Propuls Power 19:735–750CrossRefGoogle Scholar
  17. Lee SY, Seo S, Broda JC, Pal S, Santoro RJ (2000) An experimental estimation of mean reaction rate and flame structure during combustion instability in a lean premixed gas turbine combustor. Proc Combust Inst 28:775–782CrossRefGoogle Scholar
  18. Löfström et al (2000) Feasibility studies and application of laser/optical diagnostics for characterisation of a practical low-emission gas turbine combustor. Proc ASME Turbo Expo, 2000-GT-0124Google Scholar
  19. Meier UE, Wolff-Gaßmann D, Stricker W (2000) LIF imaging and 2D temperature mapping in a model combustor at elevated pressure. Aerosp Sci Technol 4:403–414CrossRefGoogle Scholar
  20. Meier W, Weigand P, Duan XR, Giezendanner-Thoben R (2007) Detailed characterization of the dynamics of thermoacoustic pulsations in a lean premixed swirl flame. Combust Flame 150:2–26CrossRefGoogle Scholar
  21. Petersson P et al (2007) Simultaneous PIV_OH-PLIF, Rayleigh thermometry_OH-PLIF and stereo PIV measurements in a low-swirl flame. Appl Opt 46:3928–3936CrossRefGoogle Scholar
  22. Roux S, Lartigue G, Poinsot T, Meier U, Berat C (2005) Studies of mean and unsteady flow in a swirled combustor using experiments, acoustic analysis, and large eddy simulations. Combust Flame 141:40–54CrossRefGoogle Scholar
  23. Sadanandan R, Stöhr M, Meier W (2008) Simultaneous OH-PLIF and PIV measurements in a gas turbine model combustor. Appl Phys B 90:609–618CrossRefGoogle Scholar
  24. Schefer RW, Namazian M, Filtopoulos EEJ, Kelly J (1994) Temporal evolution of turbulence/chemistry interactions in lifted, turbulent-jet flames. Proc Combust Inst 25:1223–1231Google Scholar
  25. Seitzman JM, Miller MF, Island TC, Hanson RK (1994) Proc Combust Inst 25:1743–1750Google Scholar
  26. Sirovich L (1987) Turbulence and the dynamics of coherent structures. Q Appl Math XLV(3):561–571MathSciNetGoogle Scholar
  27. Steinberg AM, Driscoll JF, Ceccio SL (2008) Measurements of turbulent premixed flame dynamics using cinema stereoscopic PIV. Exp Fluids 44:985–999CrossRefGoogle Scholar
  28. Steinberg AM, Boxx I, Stöhr M, Carter C, Meier W (2010) “Flow-flame interactions causing acoustically coupled heat release fluctuations in a thermo-acoustically unstable gas turbine model combustor”. Combust Flame (in press). doi:10.1016/j.combustflame.2010.07.011
  29. Stöhr M, Sadanandan R, Meier W (2009) Experimental study of unsteady flame structures of an oscillating swirl flame in a gas turbine model combustor. Proc Comb Inst 32:2925–2932CrossRefGoogle Scholar
  30. Stopper U, Aigner M, Meier W, Sadanandan R, Stöhr M, Kim IS (2008) Flow field and combustion characterization of premixed gas turbine flames by planar laser techniques. Proc ASME Turbo Expo, GT2008-50520Google Scholar
  31. Strakey PA, Woodruff SD, Williams TC, Schefer RW (2008) OH-planar fluorescence measurements of pressurized, hydrogen premixed flames in the simval combustor. AIAA J 46:1604–1613CrossRefGoogle Scholar
  32. Tanahashi M, Murakami S, Choi GM, Fukuchi Y, Miyauchi T (2005) Simultaneous CH–OH PLIF and stereoscopic PIV measurements of turbulent premixed flames. Proc Combust Inst 30:1665–1672CrossRefGoogle Scholar
  33. Tanahashi M, Taka S, Shimura M, Miyauchi T (2008) CH double-pulsed PLIF measurement in turbulent premixed flame. Exp Fluids 45:323–332CrossRefGoogle Scholar
  34. Upatnieks A, Driscoll JF, Rasmussen CC, Ceccio SL (2004) Liftoff of turbulent jet flames—Assessment of edge flame and other concepts using cinema-PIV. Combust Flame 138:259–272CrossRefGoogle Scholar
  35. Watson KA, Lyons KM, Carter CD, Donbar JM (2002) Simultaneous two-shot CH planar laser-induced fluorescence and particle image velocimetry measurements in lifted CH4/air diffusion flames. Proc Combust Inst 29:1905–1912CrossRefGoogle Scholar
  36. Willert C, Hassa C, Stockhausen G, Jarius M, Voges M, Klinner J (2006) Combines PIV and DGV applied to a pressurized gas turbine combustor facility. Meas Sci Technol 17:1670–1679CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Isaac Boxx
    • 1
  • Christoph M. Arndt
    • 1
  • Campbell D. Carter
    • 2
  • Wolfgang Meier
    • 1
  1. 1.Institut für Verbrennungstechnik, Deutsches Zentrum für Luft-und Raumfahrt (DLR)StuttgartGermany
  2. 2.Air Force Research Laboratory (AFRL)/RZASWright-Patterson AFBDaytonUSA

Personalised recommendations