Experiments in Fluids

, Volume 50, Issue 6, pp 1625–1632

Scalar interactions between parallel jets measured using a two-channel PLIF technique

Research Article

Abstract

A two-channel PLIF technique that simultaneously quantifies two scalar fields is presented. The technique consists of two independently operated single-color PLIF systems that synchronously image a common region. Two dyes (fluorescein sodium salt and oxazine 725) are excited by two lasers (argon-ion and krypton-ion), and the resulting fluorescence is imaged by a pair of cameras. The two-channel system is used to study mixing between two parallel jets, each transporting a different scalar species. Time-averaged and instantaneous mixing statistics are calculated and used to show the effects of turbulent structure on scalar mixing. In particular, the existence of positive spatial correlations between the two scalar fields is demonstrated in off-axis mixing regions.

References

  1. Arcoumanis C, McGuirk J, Palma J (1990) On the use of fluorescent dyes for concentration measurements in water flows. Exp Fluids 10(2–3):177–180. doi:10.1007/BF00215028 Google Scholar
  2. Becker HA, Booth BD (1975) Mixing in the interaction zone of two free jets. Am Inst Chem Eng J 21(5):949–958. doi:10.1002/aic.690210517 Google Scholar
  3. Brown L (1992) A survey of image registration techniques. ACM Comput Surv 24(4):325–376. doi:10.1145/146370.146374 CrossRefGoogle Scholar
  4. Bruchhausen M, Guillard F, Lemoine F (2005) Instantaneous measurement of two-dimensional temperature distributions by means of two-color planar laser induced fluorescence (PLIF). Exp Fluids 38(1):123–131. doi:10.1007/s00348-004-0911-2 CrossRefGoogle Scholar
  5. Cetegen BM, Mohamad N (1993) Experiments on liquid mixing and reaction in a vortex. J Fluid Mech 249:391–414. doi:10.1017/S0022112093001223 CrossRefGoogle Scholar
  6. Cetegen BM, Sirignano WA (1990) Study of mixing and reaction in the field of a vortex. Combust Sci Technol 72(4):157–181. doi:10.1080/00102209008951646 CrossRefGoogle Scholar
  7. Champagne FH, Wygnanski IJ (1971) An experimental investigation of coaxial turbulent jets. Int J Heat Mass Transf 14(9):1445–1464. doi:10.1016/0017-9310(71)90191-8 CrossRefGoogle Scholar
  8. Coppeta J, Rogers C (1998) Dual emission laser induced fluorescence for direct planar scalar behavior measurements. Exp Fluids 25(1):1–15. doi:10.1007/s003480050202 CrossRefGoogle Scholar
  9. Costa-Patry E, Mydlarski L (2008) Mixing of two thermal fields emitted from line sources in turbulent channel flow. J Fluid Mech 609:349–375. doi:10.1017/S0022112008002425 MATHCrossRefGoogle Scholar
  10. Crimaldi JP (2008) Planar laser induced fluorescence in aqueous flows. Exp Fluids 44(6):851–863. doi:10.1007/s00348-008-0496-2 CrossRefGoogle Scholar
  11. Crimaldi JP, Koseff JR (2001) High-resolution measurements of the spatial and temporal scalar structure of a turbulent plume. Exp Fluids 31(1):90–102. doi:10.1007/s003480000263 CrossRefGoogle Scholar
  12. Crimaldi JP, Cadwell JR, Weiss JB (2008) Reaction enhancement of isolated scalars by vortex stirring. Phys Fluids 20(7). doi:10.1063/1.2963139
  13. Duplat J, Villermaux E (2008) Mixing by random stirring in confined mixtures. J Fluid Mech 617:51. doi:10.1017/S0022112008003789 MathSciNetMATHCrossRefGoogle Scholar
  14. Fujisawa N, Nakamura K, Srinivas K (2004) Interaction of two parallel plane jets of different velocities. J Vis 7(2):135–142. doi:10.1007/BF03181586 CrossRefGoogle Scholar
  15. Grandmaison E, Zettler N (1989) Turbulent mixing in coflowing plane jets. Can J Chem Eng 67(6):889–897. doi:10.1002/cjce.5450670604 CrossRefGoogle Scholar
  16. Heikkila J, Silven O (1997) A four-step camera calibration procedure with implicit image correction. In: IEEE computer society conference on computer vision and pattern recognition, pp 1106–1112. doi:10.1109/CVPR.1997.609468
  17. Hodgson JE, Moawad AK, Rajaratnam N (1999) Concentration field of multiple circular turbulent jets. J Hydraul Eng Res 37(2):249–256. doi:10.1080/00221689909498309 CrossRefGoogle Scholar
  18. Karasso PS, Mungal MG (1997) PLIF measurements in aqueous flows using the Nd: YAG laser. Exp Fluids 23(5):382–387. doi:10.1007/s003480050125 CrossRefGoogle Scholar
  19. Kling K, Mewes D (2004) Two-colour laser induced fluorescence for the quantification of micro- and macromixing in stirred vessels. Chem Eng Sci 59(7):1523–1528. doi:10.1016/j.ces.2004.01.015 CrossRefGoogle Scholar
  20. Koochesfahani MM, Dimotakis PE (1986) Mixing and chemical reactions in a turbulent liquid mixing layer. J Fluid Mech 170:83–112. doi:10.1017/S0022112086000812 CrossRefGoogle Scholar
  21. Larsen LG, Crimaldi JP (2006) The effect of photobleaching on PLIF. Exp Fluids 41(5):803–812. doi:10.1007/s00348-006-0205-y CrossRefGoogle Scholar
  22. Lavertu TM, Mydlarski L, Gaskin SJ (2008) Differential diffusion of high-Schmidt-number passive scalars in a turbulent jet. J Fluid Mech 612:439–475. doi:10.1017/S0022112008003224 MATHCrossRefGoogle Scholar
  23. Lehwald A, Thevenin D, Zahringer K (2010) Quantifying macro-mixing and micro-mixing in a static mixer using two-tracer laser-induced fluorescence. Exp Fluids 48:823–836CrossRefGoogle Scholar
  24. Martin MM, Lindqvist L (1975) The pH dependence of fluorescein fluorescence. J Lumin 10(6):381–390. doi:10.1016/0022-2313(75)90003-4 CrossRefGoogle Scholar
  25. Melton LA, Lipp CW (2003) Criteria for quantitative PLIF experiments using high-power lasers. Exp Fluids 35(4):310–316. doi:10.1007/s00348-003-0632-y CrossRefGoogle Scholar
  26. Pani B, Dash R (1983) Three-dimensional single and multiple free jets. J Hydraul Eng 109(2):254. doi:10.1061/(ASCE)0733-9429(1983)109:2(254) CrossRefGoogle Scholar
  27. Robinson GA, Lucht RP, Laurendeau NM (2008) Two-color planar laser-induced fluorescence thermometry in aqueous solutions. Appl Opt 47(15):2852–2858. doi:10.1364/AO.47.002852 CrossRefGoogle Scholar
  28. Sakakibara J, Adrian RJ (1999) Whole field measurement of temperature in water using two-color laser induced fluorescence. Exp Fluids 26(1–2):7–15. doi:10.1007/s003480050260 CrossRefGoogle Scholar
  29. Smart PL, Laidlaw IMS (1977) An evaluation of some fluorescent dyes for water tracing. Water Resour Res 13(1):15–33CrossRefGoogle Scholar
  30. Stapountzis H, Westerweel J, Bessem JM, Westendorp A, Nieuwstadt FTM (1992) Measurement of product concentration of two parallel reactive jets using digital image processing. Appl Sci Res 49(3):245–259. doi:10.1007/BF00384625 CrossRefGoogle Scholar
  31. Su LK, Clemens NT (1999) Planar measurements of the full three-dimensional scalar dissipation rate in gas-phase turbulent flows. Exp Fluids 27(6):507–521. doi:10.1007/s003480050375 CrossRefGoogle Scholar
  32. Tong C, Warhaft Z (1995) Passive scalar dispersion and mixing in a turbulent jet. J Fluid Mech 292:1–38. doi:10.1017/S0022112095001418 CrossRefGoogle Scholar
  33. Walker DA (1987) A fluorescence technique for measurement of concentration in mixing liquids. J Phys E Sci Instrum 20(2):217–224. doi:10.1088/0022-3735/20/2/019 CrossRefGoogle Scholar
  34. Wang CS, Lin YF, Sheu MJ (1993) Measurements of turbulent inclined plane dual jets. Exp Fluids 16(1):27–35. doi:10.1007/BF00188502 CrossRefGoogle Scholar
  35. Wang HJ, Davidson MJ (2003) Jet interaction in a still ambient fluid. J Hydraul Eng 129(5):349–357. doi:10.1061/(ASCE)0733-9429(2003)129:5(349) CrossRefGoogle Scholar
  36. Ware B, Cyr D, Gorti S, Lanni F (1983) Electrophoretic and frictional properties of particles in complex media measured by laser light scattering and fluorescence photobleaching recovery. In: Dahneke BE (eds) Measurement of suspended particles by quasi-elastic light scattering.. Wiley, New York, pp 255–289Google Scholar
  37. Warhaft Z (1981) The use of dual heat injection to infer scalar covariance decay in grid turbulence. J Fluid Mech 104:93–109. doi:10.1017/S0022112081002838 CrossRefGoogle Scholar
  38. Warhaft Z (1984) The interference of thermal fields from line sources in grid turbulence. J Fluid Mech 144:363–387. doi:10.1017/S0022112084001646 CrossRefGoogle Scholar
  39. Webster DR, Roberts PJW, Ra’ad L (2001) Simultaneous DPTV/PLIF measurements of a turbulent jet. Exp Fluids 30(1):65–72. doi:10.1007/s003480000137 CrossRefGoogle Scholar
  40. Wygnanski I, Fiedler H (1969) Some measurements in the self-preserving jet. J Fluid Mech 38(03):577–612. doi:10.1017/S0022112069000358 CrossRefGoogle Scholar
  41. Yuu S, Shimoda F, Jotaki T (1979) Hot wire measurement in the interacting two-plane parallel jets. AIChE J 25(4):676–685. doi:10.1002/aic.690250414 CrossRefGoogle Scholar
  42. Zhang Z (1999) Flexible camera calibration by viewing a plane from unknown orientations. In: International Conference on Computer Vision, Corfu, Greece, pp 666–673Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Department of Civil and Environmental EngineeringUniversity of ColoradoBoulderUSA

Personalised recommendations