Experiments in Fluids

, Volume 52, Issue 3, pp 543–554 | Cite as

Computed tomographic X-ray velocimetry for simultaneous 3D measurement of velocity and geometry in opaque vessels

  • S. Dubsky
  • R. A. Jamison
  • S. P. A. Higgins
  • K. K. W. Siu
  • K. Hourigan
  • A. Fouras
Research Article


Computed tomographic X-ray velocimetry has been developed for simultaneous three-dimensional measurement of flow and vessel geometry. The technique uses cross-correlation functions calculated from X-ray projection image pairs acquired at multiple viewing angles to tomographically reconstruct the flow through opaque objects with high resolution. The reconstruction is performed using an iterative, least squares approach. The simultaneous measurement of the object’s structure is performed with a limited projection tomography method. An extensive parametric study using Monte Carlo simulation reveals accurate measurements with as few as 3 projection angles, and a minimum required scan angle of only 30°. When using a single/source detector system, the technique is limited to measurement of periodic or steady flow fields; however, with the use of a multiple source/detector system, instantaneous measurement will be possible. Synchrotron experiments are conducted to demonstrate the simultaneous measurement of structure and flow in a complex geometry with strong three-dimensionality. The technique will find applications in biological flow measurement, and also in engineering applications where optical access is limited, such as in mineral processing.


Root Mean Square Error Particle Image Velocimetry Seeding Density Tomographic Reconstruction Particle Tracking Velocimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors gratefully acknowledge the support of the Japan Synchrotron Radiation Research Institute (JASRI) under Proposal Nos. 2009A0022 and 2009A1882. The authors would like to thank Prof. Naoto Yagi and Dr. Kentaro Uesugi of SPring-8/JASRI for their assistance with the experiments. Support from the Australian Research Council (Grant Nos. DP0877327, DP0987643) is also gratefully acknowledged.


  1. Adrian RJ (2005) Twenty years of particle image velocimetry. Exp Fluids 39:159–169CrossRefGoogle Scholar
  2. Azevedo SG, Schneberk DJ, Fitch JP, Martz HE (1990) Calculation of the rotational centers in computed tomography sinograms. IEEE Trans Nucl Sci 37:1525–1540CrossRefGoogle Scholar
  3. Barnhart DH, Adrian RJ, Papen GC (1994) Phase-conjugate holographic system for high-resolution particle-image velocimetry. Appl Opt 33:7159–7170CrossRefGoogle Scholar
  4. Berry MV, Gibbs DF (1970) Interpretation of optical projections. Proc R Soc Lond Ser A 314:143CrossRefGoogle Scholar
  5. Donath T, Beckmann F, Schreyer A (2006) Automated determination of the center of rotation in tomography data. J Opt Soc Am 23:1048–1053CrossRefGoogle Scholar
  6. Dubsky S, Jamison RA, Irvine SC, Siu KKW, Hourigan K, Fouras A (2010) Computed tomographic x-ray velocimetry. Appl Phys Lett 96:023702CrossRefGoogle Scholar
  7. Elsinga GE, Scarano F, Wieneke B, van Oudheusden BW (2006) Tomographic particle image velocimetry. Exp Fluids 41:933–947CrossRefGoogle Scholar
  8. Fouras A, Soria J (1998) Accuracy of out-of-plane vorticity measurements derived from in-plane velocity field data. Exp Fluids 25:409–430CrossRefGoogle Scholar
  9. Fouras A, Dusting J, Lewis R, Hourigan K (2007) Three-dimensional synchrotron x-ray particle image velocimetry. J Appl Phys 102:064916CrossRefGoogle Scholar
  10. Fouras A, Kitchen MJ, Dubsky S, Lewis RA, Hooper SB, Hourigan K (2009) The past, present, and future of x-ray technology for in vivo imaging of function and form. J Appl Phys 105:102009CrossRefGoogle Scholar
  11. Fouras A, Lo Jacono D, Nguyen CV, Hourigan K (2009) Volumetric correlation PIV: a new technique for 3D velocity vector field measurement. Exp Fluids 47:569–577CrossRefGoogle Scholar
  12. Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M (2003) Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–177CrossRefGoogle Scholar
  13. Im KS, Fezzaa K, Wang YJ, Liu X, Wang J, Lai MC (2007) Particle tracking velocimetry using fast x-ray phase-contrast imaging. Appl Phys Lett 90:091919CrossRefGoogle Scholar
  14. Irvine SC, Paganin DM, Dubsky S, Lewis RA, Fouras A (2008) Phase retrieval for improved three-dimensional velocimetry of dynamic x-ray blood speckle. Appl Phys Lett 93(15):153901CrossRefGoogle Scholar
  15. Irvine SC, Paganin DM, Jamison A, Dubsky S, Fouras A (2010) Vector tomographic X-ray phase contrast velocimetry utilizing dynamic blood speckle. Opt Express 18:2368–2379CrossRefGoogle Scholar
  16. Kak AC, Slaney M (2001) Principles of computerized tomographic imaging. Society of Industrial and Applied Mathematics, PhiladelphiaCrossRefGoogle Scholar
  17. Kertzscher U, Seeger A, Affeld K, Goubergrits L, Wellnhofer E (2004) X-ray based particle tracking velocimetry—a measurement technique for multi-phase flows and flows without optical access. Flow Meas Instrum 36:455–462Google Scholar
  18. Kheradvar A, Houle H, Pedrizzetti G, Tonti G, Belcik T, Ashraf M, Lindner JR, Gharib M, Sahn D (2010) Echocardiographic particle image velocimetry: a novel technique for quantification of left ventricular blood vorticity pattern. J Am Soc Echocardiogr 23:86–94CrossRefGoogle Scholar
  19. Kim GB, Lee SJ (2006) X-ray PIV measurements of blood flows without tracer particles. Exp Fluids 41:195–200CrossRefGoogle Scholar
  20. Kim HB, Hertzberg JR, Shandas R (2004) Development and validation of echo PIV. Exp Fluids 36:455–462CrossRefGoogle Scholar
  21. Kitzhofer J, Brucker C (2010) Tomographic particle tracking velocimetry using telecentric imaging. Exp FluidsGoogle Scholar
  22. Lee SJ, Kim GB (2003) X-ray particle image velocimetry for measuring quantitative flow information inside opaque objects. J Appl Phys 94:3620–3623CrossRefGoogle Scholar
  23. Lee SJ, Jung SY, Ahn S (2010) Flow tracing microparticle sensors designed for enhanced X-ray contrast. Biosens Bioelectron 25:1571–1578CrossRefGoogle Scholar
  24. Lu J, Pereira F, Fraser SE, Gharib M (2008) Three-dimensional real-time imaging of cardiac cell motions in living embryos. J Biomed Opt 13(1):014006CrossRefGoogle Scholar
  25. Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15:133–146CrossRefGoogle Scholar
  26. Nesbitt WS, Westein E, Tovar-Lopez FJ, Tolouei E, Mitchell A, Fu J, Carberry J, Fouras A, Jackson SP (2009) A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 15:665–U146CrossRefGoogle Scholar
  27. Niu L, Qian M, Wan K, Yu WT, Jin QF, Ling T, Gao S, Zheng HR (2010) Ultrasonic particle image velocimetry for improved flow gradient imaging: algorithms, methodology and validation. Phys Med Biol 55:2103–2120CrossRefGoogle Scholar
  28. Poelma C, Vander Heiden K, Hierck BP, Poelmann RE, Westerweel J (2010) Measurements of the wall shear stress distribution in the outflow tract of an embryonic chicken heart. J R Soc Interface 7:91–103CrossRefGoogle Scholar
  29. Pereira F, Gharib M, Dabiri D, Modarress D (2000) Defocusing digital particle image velocimetry: a 3-component 3-dimensional DPIV measurement technique. Exp Fluids 29(7):S78–S84CrossRefGoogle Scholar
  30. Seeger A, Affeld K, Goubergrits L, Kertzscher U, Wellnhofer E (2001) X-ray-based assessment of the three-dimensional velocity of the liquid phase in a bubble column. Exp Fluids 31:193–201CrossRefGoogle Scholar
  31. Troolin DR, Longmire EK (2010) Volumetric velocity measurements of vortex rings from inclined exits. Exp Fluids 48:409–420CrossRefGoogle Scholar
  32. Vetel J, Garon A, Pelletier D (2009) Lagrangian coherent structures in the human carotid artery bifurcation. Exp Fluids 46:1067–1079CrossRefGoogle Scholar
  33. Wang YJ, Liu X, Im KS, Lee WK, Wang J, Fezzaa K, Hung DLS, Winkelman JR (2008) Ultrafast X-ray study of dense-liquid-jet flow dynamics using structure-tracking velocimetry. Nat Phys 4:305–309CrossRefGoogle Scholar
  34. Westerweel J (2008) On velocity gradients in PIV interrogation. Exp Fluids 44:831–842CrossRefGoogle Scholar
  35. Westerweel J, Geelhoed PF, Lindken R (2004) Single-pixel resolution ensemble correlation for micro-PIV applications. Exp Fluids 37:375–384CrossRefGoogle Scholar
  36. Wilkins SW, Gureyev TE, Gao D, Pogany A, Stevenson AW (1996) Phase-contrast imaging using polychromatic hard X-rays. Nature 384:335–338CrossRefGoogle Scholar
  37. Willert CE, Gharib M (1992) 3-Dimensional particle imaging with a single camera. Exp Fluids 12:353–358CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • S. Dubsky
    • 1
  • R. A. Jamison
    • 1
  • S. P. A. Higgins
    • 1
  • K. K. W. Siu
    • 2
  • K. Hourigan
    • 1
  • A. Fouras
    • 1
  1. 1.Division of Biological EngineeringMonash UniversityMelbourneAustralia
  2. 2.Monash Centre for Synchrotron ScienceMonash UniversityMelbourneAustralia

Personalised recommendations