Experiments in Fluids

, Volume 50, Issue 5, pp 1183–1206 | Cite as

Refractive-index and density matching in concentrated particle suspensions: a review

  • Sébastien WiederseinerEmail author
  • Nicolas Andreini
  • Gaël Epely-Chauvin
  • Christophe Ancey
Review Article


Optical measurement techniques such as particle image velocimetry (PIV) and laser Doppler velocimetry (LDV) are now routinely used in experimental fluid mechanics to investigate pure fluids or dilute suspensions. For highly concentrated particle suspensions, material turbidity has long been a substantial impediment to these techniques, which explains why they have been scarcely used so far. A renewed interest has emerged with the development of specific methods combining the use of iso-index suspensions and imaging techniques. This review paper gives a broad overview of recent advances in visualization techniques suited to concentrated particle suspensions. In particular, we show how classic methods such as PIV, LDV, particle tracking velocimetry, and laser induced fluorescence can be adapted to deal with concentrated particle suspensions.


PMMA Particle Image Velocimetry Laser Doppler Velocimetry Concentrate Suspension Particle Tracking Velocimetry 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The work presented here was supported by the Swiss National Science Foundation under grant number 200021-105193/1 and specific funds provided by EPFL (vice-présidence à la recherche). We also thank AXA for additional funding.


  1. Abbas MA, Crowe CT (1987) Experimental study of the flow properties of a homogenous slurry near transitional reynolds numbers. Int J Multiph Flow 13(3):357–364CrossRefGoogle Scholar
  2. Abbott J, Mondy L, Graham A, Brenner H (1993) Techniques for analysing the behaviour of concentrated suspensions. In: Roco M (eds) Particulate two-Phase flow. Butterworth-Heinemann, Boston, pp 3–32Google Scholar
  3. Abott J, Tetlow N, Graham A, Altobelli S, Fukushima E, Mondy L, Stephens T (1991) Experimental observations of particle migration in concentrated suspensions: couette flow. J Rheol 35:113–795CrossRefGoogle Scholar
  4. Ackerson BJ, Pusey PN (1988) Shear-induced order in suspensions of hard spheres. Phys Rev Lett 61(8):1033CrossRefGoogle Scholar
  5. Alahyari A, Longmire EK (1994) Particle image velocimetry in a variable-density flow—application to a dynamically evolving microburst. Exp Fluids 17(6):434–440CrossRefGoogle Scholar
  6. Aminabhavi TM (1984) Use of mixing rules in the analysis of data for binary liquid mixtures. J Chem Eng Data 29(1):54–55CrossRefGoogle Scholar
  7. Ancey C (2005) Solving the couette inverse problem by using a wavelet-vaguelette decomposition. J Rheol 49:441–460CrossRefGoogle Scholar
  8. Ancey C (2007) Plasticity and geophysical flows: a review. J Nonnewton Fluid Mech 142:4–35zbMATHCrossRefGoogle Scholar
  9. Ancey C, Coussot P (1999) Transition from frictional to viscous regime for granular suspensions. C R Acad Sci Paris 327:515–522Google Scholar
  10. Arago D, Biot J (1806) Mém acad France 7Google Scholar
  11. Atsavapranee P, Gharib M (1997) Structures in stratified plane mixing layers and the effects of cross-shear. J Fluid Mech 342(1):53–86MathSciNetCrossRefGoogle Scholar
  12. Augier F, Morchain J, Guiraud P, Masbernat O (2003) Volume fraction gradient-induced flow patterns in a two-liquid phase mixing layer. Chem Eng Sci 58(17):3985–3993CrossRefGoogle Scholar
  13. Averbakh A, Shauly A, Nir A, Semiat R (1997) Slow viscous flows of highly concentrated suspensions–part I: laser-doppler velocimetry in rectangular ducts. Int J Multiph Flow 23(3):409–424zbMATHCrossRefGoogle Scholar
  14. Barnes H (1995) A review of the slip (wall depletion) of polymer solutions, emulsions and particle suspensions in viscosimeters: its cause, character, and cure. J Nonnewton Fluid Mech 56:221–251CrossRefGoogle Scholar
  15. Barnes H, Nguyen Q (2001) Rotating vane rheometry—a review. J Nonnewton Fluid Mech 98:1–14zbMATHCrossRefGoogle Scholar
  16. Bonn D, Rodts S, Groenink M, Rafai S, Shahidzadeh-Bonn N, Coussot P (2008) Some applications of magnetic resonance imaging in fluid mechanics: complex flows and complex fluids. Annu Rev Fluid Mech 40:209–233MathSciNetCrossRefGoogle Scholar
  17. Bovendeerd PHM, Van Steenhoven AA, Van De Vosse FN, Vossers G (1987) Steady entry flow in a curved pipe. J Fluid Mech Digit Arch 177(1):233–246Google Scholar
  18. Braun MJ, Canacci VA, Hendricks RC (1991) Flow visualization and quantitative velocity and pressure measurements in simulated single and double brush seals. Tribol Trans 34(1):70–80CrossRefGoogle Scholar
  19. Breedveld V, Van Den Ende D, Tripathi A, Acrivos A (1998) The measurement of the shear-induced particle and fluid tracer diffusivities in concentrated suspensions by a novel method. J Fluid Mech 375(1):297–318zbMATHCrossRefGoogle Scholar
  20. Breedveld V, Van Den Ende D, Bosscher M, Jongschaap RJJ, Mellema J (2001) Measuring shear-induced self-diffusion in a counterrotating geometry. Phys Rev E 63(2):021,403CrossRefGoogle Scholar
  21. Breedveld V, Van Den Ende D, Jongschaap R, Mellema J (2001) Shear-induced diffusion and rheology of noncolloidal suspensions: time scales and particle displacements. J Chem Phys 114(13):5923–5936CrossRefGoogle Scholar
  22. Breedveld V, Van Den Ende D, Bosscher M, Jongschaap RJJ, Mellema J (2002) Measurement of the full shear-induced self-diffusion tensor of noncolloidal suspensions. J Chem Phys 116(23):10529–10535CrossRefGoogle Scholar
  23. Brown JM, Kadlubowski BM, Forney LJ, Sommerfeld JT (1996) Density gradient columns: dynamic modeling for linear profiles. Rev Sci Instr 67(11):3973–3980CrossRefGoogle Scholar
  24. Budwig R (1994) Refractive index matching methods for liquid flow investigations. Exp Fluids 17(5):350–355CrossRefGoogle Scholar
  25. Budwig R, Elger D, Hooper H, Slippy J (1993) Steady flow in abdominal aortic-aneurysm models. J Biomech Eng Trans ASME 115(4):418–423CrossRefGoogle Scholar
  26. Budwig R, Martinez J, Carlson T (1993b) Hydrodynamic and mass transfer characteristics of acoustically levitated and oscillated droplets. Bull Am Phys Soc 33Google Scholar
  27. Burdett ID, Webb DR, Davies GA (1981) A new technique for studying dispersion flow, holdup and axial mixing in packed extraction columns. Chem Eng Sci 36(12):1915–1919CrossRefGoogle Scholar
  28. Callaghan PT (1999) Rheo-NMR: nuclear magnetic resonance and the rheology of complex fluids. Rep Progr Phys 62(4):599–670CrossRefGoogle Scholar
  29. Cariou JM, Dugas J, Martin L, Michel P (1986) Refractive-index variations with temperature of PMMA and polycarbonate. Appl Optics 25(3):334–336CrossRefGoogle Scholar
  30. Cenedese A, Viotti P (1996) Lagrangian analysis of nonreactive pollutant dispersion in porous media by means of the particle image velocimetry technique. Water Resour Res 32(8):2329–2343CrossRefGoogle Scholar
  31. Chaudhuri P, Gao Y, Berthier L, Kilfoil M, Kob W (2008) A random walk description of the heterogeneous glassy dynamics of attracting colloids. J Phys Condens Matter 20(24):244,126–0953-8984CrossRefGoogle Scholar
  32. Chen RC (1991) Experimental and numerical studies of solid-liquid multiphase flow in pipes. PhD thesis, Case Western Reserve UniversityGoogle Scholar
  33. Chen RC, Fan LS (1992) Particle image velocimetry for characterizing the flow structure in three-dimensional gas-liquid-solid fluidized beds. Chem Eng Sci 47(13–14):3615–3622Google Scholar
  34. Chen RC, Tzeng JW, Reese J, Fan LS (1992) Bed flow structure of a three-dimensional three-phase fluidized bed. In: AIChE Annual Meeting, Miami BeachGoogle Scholar
  35. Chen B, Mikami F, Nishikawa N (2005) Experimental studies on transient features of natural convection in particles suspensions. Int J Heat Mass Transf 48(14):2933–2942CrossRefGoogle Scholar
  36. Christiansen C (1884) Untersuchungen nber die optischen Eigenschaften von fein verteilten Körpern. Ann Phys Chem 23:298–306Google Scholar
  37. Christiansen C (1885) Untersuchungen nber die optischen Eigenschaften von fein verteilten Körpern. Ann Phys Chem 24:439–446Google Scholar
  38. Conaghan B, Rosen S (1972) The optical properties of two-phase polymer systems: single scattering in monodispese, non-absorbing systems. Polym Eng Sci 12(2):134–139CrossRefGoogle Scholar
  39. Coombs SH (1981) A density-gradient column for determining the specific gravity of fish eggs, with particular reference to eggs of the mackerel scomber scombrus. Mar Biol 63(1):101–106CrossRefGoogle Scholar
  40. Coussot P (2005) Rheometry of pastes, suspensions and granular materials. Wiley, New YorkCrossRefGoogle Scholar
  41. Coussot P, Raynaud J, Ancey C (2003) Combined MRI-rheometry determination of the behavior of mud suspensions. In: Chen C, Rickenmann D (eds) Debris flow mechanics and mitigation conference. Mills Press, Davos, pp 291–301Google Scholar
  42. Coussot P, Tocquer L, Lanos C, Ovarlez G (2009) Macroscopic vs. local rheology of yield stress fluids. J Nonnewton Fluid Mech 158:85–90CrossRefGoogle Scholar
  43. Cui M, Adrian R (1997) Refractive index matching and marking methods for highly concentrated solid-liquid flows. Exp Fluids 22:261–264CrossRefGoogle Scholar
  44. Dale D, Gladstone F (1858) Phil Trans 148:887CrossRefGoogle Scholar
  45. Dale D, Gladstone F (1864) Phil Trans 153:317Google Scholar
  46. Daviero GJ, Roberts PJW, Maile K (2001) Refractive index matching in large-scale stratified experiments. Exp Fluids 31(2):119–126CrossRefGoogle Scholar
  47. Davis RH, Acrivos A (1985) Sedimentation of noncolloidal particles at low reynolds numbers. Annu Rev Fluid Mech 17(1):91CrossRefGoogle Scholar
  48. Dibble CJ, Kogan M, Solomon MJ (2006) Structure and dynamics of colloidal depletion gels: coincidence of transitions and heterogeneity. Phys Rev E 74(4):041403CrossRefGoogle Scholar
  49. Durst F, Keck T, Kleine R (1979) Turbulence quantities and reynolds stress in pipe flow of polymer solutions measured by two-channel laser-doppler anemometry. In: Proceedings of 6th symposium on Turbulence, RollaGoogle Scholar
  50. Durst F, Mnller R, Jovanovic J (1988) Determination of the measuring position in laser-doppler anemometry. Exp Fluids 6(2):105–110Google Scholar
  51. Dybbs A, Edwards RV (1984) An index-matched flow system for measurements of flow in complex geometries. In: Proceedings of 2nd international symposium on application of LDA to fluid mechanics, Lisbon, pp 171–184Google Scholar
  52. Einstein A (1906) Eine neue Bestimmung der Moleknldimensionen. Ann Phys 19:289CrossRefGoogle Scholar
  53. Einstein A (1911) Berichigung zu meiner Arbeit: “Eine neue Bestimmung der Moleknldimensionen”. Ann Phys 34(339):591–592CrossRefGoogle Scholar
  54. Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43:823–858CrossRefGoogle Scholar
  55. Elphick RV, Martin WW, Currie IG (1984) Application of lda to high reynolds number cross flow. In: Proceedings of 2nd international symposium on application of LDA to fluid mechanics, LisbonGoogle Scholar
  56. Fukushima E (1999) Nuclear magnetic resonance as a tool fo study flow. Annu Rev Fluid Mech 31(1):95–123CrossRefGoogle Scholar
  57. Gao Y, Kilfoil ML (2007) Direct imaging of dynamical heterogeneities near the colloid-gel transition. Phys Rev Lett 99(7):078301CrossRefGoogle Scholar
  58. Gijsen FJH, Palmen DEM, van der Beek MHE, van de Vosse FN, van Dongen MEH, Janssen JD (1996) Analysis of the axial flow field in stenosed carotid artery bifurcation models—LDA experiments. J Biomech 29(11):1483–1489CrossRefGoogle Scholar
  59. Graham A, Bird R (1984) Particle clusters in concentrated suspensions. 1. experimental observations of particle clusters. Ind Eng Chem Fundam 23:406–410CrossRefGoogle Scholar
  60. Graham A, Steele R (1984) Particle clusters in concentrated suspensions. 2. information theory and particle clusters. Ind Eng Chem Fundam 23:411–420CrossRefGoogle Scholar
  61. Graham A, Steele R (1984) Particle clusters in concentrated suspensions. 3. prediction of suspension viscosity. Ind Eng Chem Fundam 23:420–425CrossRefGoogle Scholar
  62. Graham A, Altobelli S, Fukushima E, Mondy L, Stephens T (1991) Note: NMR imaging of shear induced diffusion and structure in concentrated suspensions udergoing couette flow. J Rheol 35(1):191–201CrossRefGoogle Scholar
  63. Guyon E, Hulin JP, Petit L (2001) Hydrodynamique physique. EDP SciGoogle Scholar
  64. Haam SJ (1996) Multiphase research on solid-liquid dispersion. PhD thesis, The Ohio State UniversityGoogle Scholar
  65. Haam SJ, Brodkey RS (2000) Motions of dispersed beads obtained by particle tracking velocimetry measurements: part II. Int J Multiph Flow 26(9):1419–1438zbMATHCrossRefGoogle Scholar
  66. Haam SJ, Brodkey RS, Fort I, Klaboch L, Placnik M, Vanecek V (2000) Laser doppler anemometry measurements in an index of refraction matched column in the presence of dispersed beads: part I. Int J Multiph Flow 26(9):1401–1418zbMATHCrossRefGoogle Scholar
  67. Ham JM, Homsy GM (1988) Hindered settling and hydrodynamic dispersion in quiescent sedimenting suspensions. Int J Multiph Flow 14(5):533–546CrossRefGoogle Scholar
  68. Handley D (1957) Studies of the motion of particles in liquid fluidised beds. PhD thesis, University of LeedsGoogle Scholar
  69. Hannoun IA, Fernando HIS, List El (1985) Matching the refractive index in density stratified flows. Technical report, California Institute of TechnologyGoogle Scholar
  70. Hannoun IA, Fernando HJS, List EJ (1988) Turbulence structure near a sharp density interface. J Fluid Mech Digit Arch 189(1):189–209Google Scholar
  71. Hassan YA, Dominguez-Ontiveros EE (2008) Flow visualization in a pebble bed reactor experiment using PIV and refractive index matching techniques. Nucl Eng Des 238(11):3080–3085CrossRefGoogle Scholar
  72. Hassan YA, Blanchat TK, Seeley CH Jr, Canaan RE (1992) Simultaneous velocity measurements of both components of a two-phase flow using particle image velocimetry. Int J Multiph Flow 18(3):371–395zbMATHCrossRefGoogle Scholar
  73. Heller W (1945) The determination of refractive indices of colloidal particles by means of a new mixture rule or from measurements of light scattering. Phys Rev 68(1-2):5–10MathSciNetCrossRefGoogle Scholar
  74. Heller W (1965) Remarks on refractive index mixture rules. J Phys Chem 69(4):1123–1129CrossRefGoogle Scholar
  75. Hendriks F, Aviram A (1982) Use of zinc iodide solutions in flow research. Rev Sci Instr 53(1)Google Scholar
  76. Hopkins LM, Kelly JT, Wexler AS, Prasad AK (2000) Particle image velocimetry measurements in complex geometries. Exp Fluids 29(1):91–95CrossRefGoogle Scholar
  77. Horvay M, Leuckel W (1984) LDA measurement of liquid swirl flow in converging swirl chamber with tangential inlets. In: Proceedings of 2nd international symposium on application of LDA to fluid mechanics, LisbonGoogle Scholar
  78. Hurlburt C (1984) The jewler’s refractometer as a mineralogical tool. Am Mineral 69:391–398Google Scholar
  79. Jacobs DA, Jacobs CW, Andereck CD (1988) Biological scattering particles for laser doppler velocimetry. Phys Fluids 31(12):3457–3461CrossRefGoogle Scholar
  80. Jana SC, Kapoor B, Acrivos A (1995) Apparent wall slip velocity coefficients in concentrated suspensions of noncolloidal particles. J Rheol 39(6):1123–1132CrossRefGoogle Scholar
  81. Johnston W, Dybbs A, Edwards R (1975) Measurement of fluid velocity inside porous media with a laser anemometer. Phys Fluids 18(7):913–914CrossRefGoogle Scholar
  82. Kadambi JR, Chen RC, Bhunia S, Dybbs AZ, Edwards RV, Rutstein A (1990) Measurement of solid-liquid multiphase flow using refractive-index matching technique. In: Laser anemometry—advances and applications, pp 477–487Google Scholar
  83. Kannemans H (1979) Principles of lda measurements in a fully transparent pump. In: Fluid mechanics silver jubilee conference, GlasgowGoogle Scholar
  84. Kapoor B, Acrivos A (1995) Sedimentation and sediment flow in settling tanks with inclined walls. J Fluid Mech Digit Arch 290(1):39–66zbMATHGoogle Scholar
  85. Karnis A, Goldsmith HL, Mason SG (1966) The kinetics of flowing dispersions: I. concentrated suspensions of rigid particles. J Colloid Interface Sci 22(6):531–553CrossRefGoogle Scholar
  86. Kaufman LJ, Weitz DA (2006) Direct imaging of repulsive and attractive colloidal glasses. J Chem Phys 125(7):074716CrossRefGoogle Scholar
  87. Kegel WK, van Blaaderen A (2000) Direct observation of dynamical heterogeneities in colloidal hard-sphere suspensions. Science 287(5451):290–293CrossRefGoogle Scholar
  88. Kodak (2005) Kodak KAI-2020/KAI-2001 CCD timing specification version 1.1 evaluation board kit 4h0691Google Scholar
  89. Koh C (1991) Experimental and theoretical studies on two-phase fows. PhD thesis, California Institute of TechnologyGoogle Scholar
  90. Koh C, Hookham P, Leal L (1994) An experimental investigation of concentrated suspension flows in a rectangular channel. J Fluid Mech 266:1–32CrossRefGoogle Scholar
  91. Kohnen C, Bohnet M (2001) Measurement and simulation of fluid flow in agitated solid/liquid suspensions. Chem Eng Technol 24(6):639–643CrossRefGoogle Scholar
  92. Krishnan GP, Beimfohr S, Leighton DT (1996) Shear-induced radial segregation in bidisperse suspensions. J Fluid Mech Digit Arch 321(1):371–393Google Scholar
  93. Kubo K, Aratani T, Mishima A, Yano T (1978) Photographic observation of flow pattern in voids of packed-bed of spheres. J Chem Eng Jpn 11(5):405–407CrossRefGoogle Scholar
  94. Lam SY, Damzen MJ (2003) Characterisation of solid-state dyes and their use as tunable laser amplifiers. Appl Phys B Lasers Optics 77(6):577–584. doi: 10.1007/s00340-003-1285-5 CrossRefGoogle Scholar
  95. Leighton D, Acrivos A (1987) Measurement of shear-induced self-diffusion in concentrated suspensions of spheres. J Fluid Mech 177:109–131CrossRefGoogle Scholar
  96. Lenoble M (2005) Ecoulement et ségrégation dans des pâtes granulaires modèle. PhD thesis, Université Bordeaux 1Google Scholar
  97. Lenoble M, Snabre P, Pouligny B (2005) The flow of very concentrated slurry in a parallel-plate device: influence of gravity. Phys Fluids 17:073,303CrossRefGoogle Scholar
  98. Lenoble M, Snabre P, Pouligny B (2005b) Shearing a granular pate in a couette device: flow and size segraegation. In: Powders and grains, pp 621–624Google Scholar
  99. Liu CH, Nouri JM, Whitelaw JH, Tse DGN (1989) Particle velocities in a swirling, confined flow. Combust Sci Technol 68(4–6):131–145CrossRefGoogle Scholar
  100. Liu CH, Vafidis C, Whitelaw JH, Margary R (1990) Flow in the coolant passages of an internal combustion engine cylinder head. Exp Fluids 10(1):50–54CrossRefGoogle Scholar
  101. Lorentz HA (1906) Theory of electrons. Teubner, LeipzigGoogle Scholar
  102. Lyon M, Leal L (1998) An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 1. monodisperse systems. J Fluid Mech 363:25–56zbMATHCrossRefGoogle Scholar
  103. Lyon M, Leal L (1998) An experimental study of the motion of concentrated suspensions in two-dimensional channel flow. part 2. bidisperse systems. J Fluid Mech 363:57–77zbMATHCrossRefGoogle Scholar
  104. McDougall TJ (1979) On the elimination of refractive-index variations in turbulent density-stratified liquid flows. J Fluid Mech Digit Arch 93(1):83–96Google Scholar
  105. Mehta M, Kadambi JR, Sastry S, Sankovic JM, Wernet MP, Addie G, Visintainer R (2007) Particle velocities in the rotating impeller of a slurry pump. In: Fedsm 2007: Proceedings of the 5th joint AMSE/JSME fluids engineering summer conference, vol 1, pp 369–378Google Scholar
  106. Mewis J, Wagner NJ (2009) Current trends in suspension rheology. J Non-Newton Fluid Mech 157(3):147–150CrossRefGoogle Scholar
  107. Mikami F, Chen B, Nishikawa N (1997) Visualization of the flow features of natural convection in particle suspensions. Theor Appl Mech 46:341–348Google Scholar
  108. Mikami F, Chen B, Nishikawa N (2001) Visualization and PTV study of natural convection in particle suspensions (simultaneous measurements of velocity, temperature and interface between particle-free fluid and suspension). JSME Int J Ser B Fluids Therm Eng 44(1):30–37CrossRefGoogle Scholar
  109. Milliken WJ, Gottlieb M, Graham AL, Mondy LA, Powell RL (1989) The viscosity-volume fraction relation for suspensions of rod-like particles by falling-ball rheometry. J Fluid Mech Digit Arch 202(1):217–232Google Scholar
  110. Mondy LA, Graham AL, Majumdar A, Bryant LE (1986) Techniques of measuring particle motions in concentrated suspensions. Int J Multiph Flow 12(3):497–502CrossRefGoogle Scholar
  111. Montemagno CD, Gray WG (1995) Photoluminescent volumetric imaging: a technique for the exploration of multiphase flow and transport in porous media. Geophys Res Lett 22Google Scholar
  112. Moroni M, Cushman JH (2001) Three-dimensional particle tracking velocimetry studies of the transition from pore dispersion to fickian dispersion for homogeneous porous media. Water Resour Res 37Google Scholar
  113. Narrow TL, Yoda M, Abdel-Khalik SI (2000) A simple model for the refractive index of sodium iodide aqueous solutions. Exp Fluids 28(3):282–283CrossRefGoogle Scholar
  114. Nguyen TT, Biadillah Y, Mongrain R, Brunette J, Tardif JC, Bertrand OF (2004) A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models. J Biomech Eng 126(4):529–535CrossRefGoogle Scholar
  115. Nicolai H, Guazzelli E (1995) Effect of the vessel size on the hydrodynamic diffusion of sedimenting spheres. Phys Fluids 7(1):3–5CrossRefGoogle Scholar
  116. Nicolai H, Herzhaft B, Hinch EJ, Oger L, Guazzelli E (1995) Particle velocity fluctuations and hydrodynamic self-diffusion of sedimenting non-brownian spheres. Phys Fluids 7(1):12–23CrossRefGoogle Scholar
  117. Nicolai H, Peysson Y, Guazzelli E (1996) Velocity fluctuations of a heavy sphere falling through a sedimenting suspension. Phys Fluids 8(4):855–862CrossRefGoogle Scholar
  118. Ninomiya N, Yasuda K (2006) Visualization and piv measurement of the flow around and inside of a falling droplet. J Vis 9(3):257–264CrossRefGoogle Scholar
  119. Northrup MA, Kulp TJ, Angel SM (1991) Application of fluorescent particle imaging to measuring flow in complex media. Anal Chim Acta 255(2):275–282CrossRefGoogle Scholar
  120. Northrup MA, Kulp TJ, Angel SM (1991) Fluorescent particle image velocimetry—application to flow measurement in refractive index-matched porous-media. Appl Optics 30(21):3034–3040CrossRefGoogle Scholar
  121. Northrup MA, Kulp TJ, Angel SM, Pinder GF (1993) Direct measurement of interstitial velocity-field variations in a porous-medium using fluorescent-particle image velocimetry. Chem Eng Sci 48(1):13–21CrossRefGoogle Scholar
  122. Nouri J, Whitelaw J, Yianneskis M (1986) An investigation of refractive-index matching of continuous and discontinuous phases. In: 3rd International symposium on applications of laser anemometry to fluid mechanicsGoogle Scholar
  123. Nouri JM, Whitelaw JH, Yianneskis M (1987) Particle motion and turbulence in dense two-phase flows. Int J Multiph Flow 13(6):729–739CrossRefGoogle Scholar
  124. Nouri J, Whitelaw J, Yianneskis M (1988) A refractive-index matching technique for solid/liquid flows. In: Laser anemometry in fluid mechanics, selected papers from the 3rd international symposium on application of laser-doppler anemometry to fluid mechanicsGoogle Scholar
  125. Oki Y, Yoshiura T, Chisaki Y, Maeda M (2002) Fabrication of a distributed-feedback dye laser with a grating structure in its plastic waveguide. Appl Optics 41(24):5030–5035CrossRefGoogle Scholar
  126. Okumura M, Yuki K, Hashizume H, Sagara A (2005) Evaluation of flow structure in packed-bed tube by visualization experiment. Fusion Sci Technol 47(4):1089–1093Google Scholar
  127. Oster G, Yamamoto M (1963) Density gradient techniques. Chem Rev 63(3):257CrossRefGoogle Scholar
  128. Ouriev B (2000) Ultrasound doppler based in-line rheometry of highly concentrated suspensions. PhD thesis, ETHZGoogle Scholar
  129. Ouriev B (2002) Investigation of the wall slip effect in highly concentrated disperse systems by means of non-invasive uvp-pd method in the pressure driven shear flow. Colloid J 64(6):740–745CrossRefGoogle Scholar
  130. Ovarlez G, Bertrand F, Rodts S (2006) Local determination of the constitutive law of a dense suspension of noncolloidal particles through magnetic resonance imaging. J Rheol 50(3):259–292CrossRefGoogle Scholar
  131. Park JT, Mannheimer RJ, Grimley TA, Morrow TB (1989) Pipe flow measurements of a transparent non-newtonian slurry. J Fluids Eng Trans ASME 111(3):331–336CrossRefGoogle Scholar
  132. Parker J, Merati P (1996) An investigation of turbulent taylor-couette flow using laser doppler velocimetry in a refractive index matched facility. J Fluids Eng Trans ASME 118(4):810–818CrossRefGoogle Scholar
  133. Peurrung LM, Rashidi M, Kulp TJ (1995) Measurement of porous medium velocity fields and their volumetric averaging characteristics using particle tracking velocimetry. Chem Eng Sci 50(14):2243–2253CrossRefGoogle Scholar
  134. Plantard G, Saadaoui H, Snabre P, Pouligny B (2006) Surface-roughness-driven segregation in a granular slurry under shear. Europhys Lett 75(2):335CrossRefGoogle Scholar
  135. Potanin A (2010) 3D simulations of the flow of thixotropic fluids, in a large-gap Couette and vane-cup geometries. J Nonnewton Fluid Mech 165:299–312CrossRefGoogle Scholar
  136. Raman C (1949) The theory of the christiansen experiment. Proc Indian Natl Sci Acad 29:381–390Google Scholar
  137. Rashidi M, Peurrung L, Tompson AFB, Kulp TJ (1996) Experimental analysis of pore-scale flow and transport in porous media. Adv Water Resour 19(3):163–180CrossRefGoogle Scholar
  138. Russel J (1936) Studies of thixotropic gelation. part II. The coagulation of clay suspensions. Proc R Soc Lond A 154:550–560CrossRefGoogle Scholar
  139. Saleh S, Thovert JF, Adler PM (1992) Measurement of two-dimensional velocity fields in porous media by particle image displacement velocimetry. Exp Fluids 12(3):210–212CrossRefGoogle Scholar
  140. Saleh S, Thovert J, Adler P (1993) Flow along porous media by partical image velocimetry. AIChE J 39(11):1765–1776CrossRefGoogle Scholar
  141. Savarmand S, Heniche M, Béchard V, Bertrand F, Carreau P (2007) Analysis of the vane rheometer using 3D finite element simulation. J Rheol 51:161–177CrossRefGoogle Scholar
  142. Shauly A, Averbakh A, Nir A, Semiat R (1997) Slow viscous flows of highly concentrated suspensions—part II: particle migration, velocity and concentration profiles in rectangular ducts. Int J Multiph Flow 23(4):613–629zbMATHCrossRefGoogle Scholar
  143. Shindo Y, Kusano K (1979) Densities and refractive indices of aqueous mixtures of alkoxy alcohols. J Chem Eng Data 24(2):106–110CrossRefGoogle Scholar
  144. Shuib A, Hoskins P, Easson W (2010) Flow regime characterization in a diseased artery model. World Acad Sci Eng Technol 62:110Google Scholar
  145. Sinkankas J (1966) Mineralogy. D Van Nostrand Company, Princeton, pp 226–233Google Scholar
  146. Stähr M, Roth K, JShne B (2003) Measurement of 3d pore-scale flow in index-matched porous media. Exp Fluids 35(2):159–166CrossRefGoogle Scholar
  147. Stephenson JL, Stewart WE (1986) Optical measurements of porosity and fluid motion in packed beds. Chem Eng Sci 41(8):2161–2170CrossRefGoogle Scholar
  148. Sveen J (2004) An introduction to matpiv (
  149. Tanaka M (1999) Visualization of flow in a cubic packing of spheres. In: 9th International topical meeting on nuclear reactor thermal hydraulics, San FransiscoGoogle Scholar
  150. Tasic AZ, Djordjevic BD, Grozdanic DK, Radojkovic N (1992) Use of mixing rules in predicting refractive indexes and specific refractivities for some binary liquid mixtures. J Chem Eng Data 37(3):310–313CrossRefGoogle Scholar
  151. Thompson BE (1990) Refractive index matching techniques in complex rocket-engine flow configurations. Technical reportGoogle Scholar
  152. Timberlake B, Morris J (2002) Concentration band dynamics in free-surface couette flow of a suspension. Phys Fluids 14:1580–1589MathSciNetCrossRefGoogle Scholar
  153. Tung LH (1956) Correction. J Polym Sci 19(93):598CrossRefGoogle Scholar
  154. Tung LH, Taylor WC (1955) A rapid method of constructing density gradient tubes. J Polym Sci 17(85):441–442CrossRefGoogle Scholar
  155. Tung LH, Taylor WC (1956) An improved method of preparing density gradient tubes. J Polym Sci 21(97):144–147CrossRefGoogle Scholar
  156. Uzol O, Chow YC, Katz J, Meneveau C (2002) Unobstructed particle image velocimetry measurements within an axial turbo-pump using liquid and blades with matched refractive indices. Exp Fluids 33(6):909–919Google Scholar
  157. Van De Hulst HC (1957) Light scattering by small particles. Wiley, New YorkGoogle Scholar
  158. Varty RL (1984) A new system for index-matched laser-anemometer measurements. J Phys E Sci Instr 17(12):1124–1126CrossRefGoogle Scholar
  159. Walters K (1975) Rheometry. Chapman and Hall, LondonGoogle Scholar
  160. Wang DC, Khalili A (2002) Flow visualization and quantitative measurements inside porous media by particle image velocimetry. Opt Technol Image Process Fluids Solids Diagn 5058:232–239Google Scholar
  161. Wang P, Song C, Briscoe C, Makse HA (2008) Particle dynamics and effective temperature of jammed granular matter in a slowly sheared three-dimensional couette cell. Phys Rev E 77(6):061309CrossRefGoogle Scholar
  162. Waxler R, Horowitz D, Feldman A (1979) Optical and physical parameters of plexiglay 55 and lexan. Appl Opt 18:101CrossRefGoogle Scholar
  163. Weeks ER, Crocker JC, Levitt AC, Schofield A, Weitz DA (2000) Three-dimensional direct imaging of structural relaxation near the colloidal glass transition. Science 287(5453):627–631CrossRefGoogle Scholar
  164. Wiederseiner S (2010) Rheophysics of concentrated particle suspensions in a couette cell using a refractive index matching technique. PhD thesis, Ecole Polytechnique fédérale de LausanneGoogle Scholar
  165. Wiener O (1910) Leipzig Ber 62:256Google Scholar
  166. Wildman DJ, Ekmann JM, Kadambi JR, Chen RC (1992) Study of the flow properties of slurries using the refractive index matching technique ldv. Powder Technol 73(3):211–218CrossRefGoogle Scholar
  167. Yarlagadda A, Yoganathan A (1989) Experimental studies of model porous media fluid dynamics. Exp Fluids 8(1):59–71CrossRefGoogle Scholar
  168. Yianneskis M, Whitelaw J (1983) Velocity characteristics of pipe and jet flow witch high particle concentrations. Technical report FS/83/22, Imperial CollegeGoogle Scholar
  169. Yuki K, Okurnura M, Hashizume H, Toda S, Morley NB, Sagara A (2008) Flow visualization and heat transfer characteristics for sphere-packed pipes. J Thermophys Heat Transf 22(4):632–648CrossRefGoogle Scholar
  170. Zachos A, Kaiser M, Merzkirch W (1996) PIV measurements in multiphase flow with nominally high concentration of the solid phase. Exp Fluids 20(3):229–231CrossRefGoogle Scholar
  171. Zerai B, Saylor BZ, Kadambi JR, Oliver MJ, Mazaheri AR, Ahmadi G, Bromhal GS, Smith DH (2005) Flow characterization through a network cell using particle image velocimetry. Transp Porous Media 60:159–181CrossRefGoogle Scholar
  172. Zisselmar R, Molerus O (1979) Investigation of solid-liquid pipe flow with regard to turbulence modification. Chem Eng J 18(2):233–239CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sébastien Wiederseiner
    • 1
    Email author
  • Nicolas Andreini
    • 1
  • Gaël Epely-Chauvin
    • 1
  • Christophe Ancey
    • 1
  1. 1.Laboratoire d’Hydraulique EnvironnementaleEcole Polytechnique Fédérale de LausanneLausanneSwitzerland

Personalised recommendations