Advertisement

Experiments in Fluids

, Volume 50, Issue 2, pp 339–350 | Cite as

Ensemble-Empirical-Mode-Decomposition method for instantaneous spatial-multi-scale decomposition of wall-pressure fluctuations under a turbulent flow

  • Sébastien Debert
  • Marc PachebatEmail author
  • Vincent Valeau
  • Yves Gervais
Research Article

Abstract

This work illustrates the possibilities of the Ensemble-Empirical-Mode-Decomposition (E-EMD) technique for a detailed analysis of the time and space characteristics of the wall-pressure fluctuations under a turbulent flow. Pressure fluctuations are measured with a linear microphone array, for the cases of a turbulent boundary layer and for a diffuse airborne acoustic field. The E-EMD technique is shown to be an efficient tool for representing the spatial scales of the turbulent fluctuations at each instant. In particular, this representation is obtained without any particular assumption or a priori information on the data (e.g. temporal or spatial stationarity of the wall pressure data is not required), and acts, when applied to wide-band turbulent signals, as a wavenumber filter. Finally, it is shown how, to some extent, the E-EMD technique can separate at each instant the acoustic (propagative) from the hydrodynamic (convective) energy.

Keywords

Turbulent Boundary Layer Empirical Mode Decomposition Frequency Response Function Ensemble Empirical Mode Decomposition Intrinsic Mode Function 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors warmly acknowledge Yves Corvez, Laurent Philippon and Pascal Biais for their technical support.

References

  1. Acarlar M, Smith C (1987) A study of hairpin vortices in a laminar boundary layer. part 2. hairpin vortices generated by fluid injection. J Fluid Mech 175:43CrossRefGoogle Scholar
  2. Ai S, Li H (2008) Gear fault detection based on ensemble empirical mode decomposition and Hilbert–Huang transform. In: Proceedings of the 2008 fifth international conference on fuzzy systems and knowledge discovery, vol 3, p 173Google Scholar
  3. Arguillat B, Ricot D, Robert G, Bailly C (2005) Measurements of the wavenumber–frequency spectrum of wall pressure fluctuations under turbulent flows. In: Proceedings of 11th AIAA/CEAS aeroacoustics conference (26th AIAA aeroacoustics conference), Monterey, CaliforniaGoogle Scholar
  4. Bogey C, Bailly C (2008) Recent developments in Direct Noise Computation of turbulent flows: numerical methods and applications. In: Proceedings of 37th inter- noise congress, Shanghai, ChinaGoogle Scholar
  5. Corcos GM (1963) Resolution of pressure in turbulence. J Acoust Soc Am 35(2):192Google Scholar
  6. Debert S, Pachebat M, Valeau V, Gervais Y (2007) Experimental wave number separation of wall-pressure fluctuations beneath a turbulent boundary layer. In: Proceedings of 19th international congress of acoustics ICA2007, MadridGoogle Scholar
  7. Flandrin P, Rilling G, Goncalves P (2004) Empirical Mode Decomposition as a filter bank. IEEE Sig Proc Lett 11(2):112CrossRefGoogle Scholar
  8. Fulton M, Soraghan PJJ (2006) Ensemble Empirical Mode Decomposition applied to musical tempo estimation. In: Digital music research conference DMRN-06, Goldsmiths College, University of LondonGoogle Scholar
  9. Garello R (2008) Two-dimensional signal analysis. ISTE, LondonGoogle Scholar
  10. Hinze JO (1975) Turbulence: an introduction to its mechanism and theory, 2nd edn. McGraw-Hill Book Co., New YorkGoogle Scholar
  11. Howe MS (1998) Acoustic of fluid-structure interactions. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  12. Hu ZW, Morfey CL, Sandham ND (2002) Aeroacoustics of wall-bounded turbulent flows. AIAA J 40(3):465CrossRefGoogle Scholar
  13. Huang NE, Shen SSP (2005) Hilbert–Huang transform and its applications. Interdisciplinary mathematical sciences, vol 5, World Scientific Publishing Co. Pte. Ltd, HackensackGoogle Scholar
  14. Huang NE, Shen Z, Long SR, Wu MC, Shih HH, Zheng Q, Yen NC, Tung CC, Liu HH (1998) The Empirical Mode Decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc R Soc Lond A 454:953MathSciNetGoogle Scholar
  15. Huang XY, Schmitt FG, Lu ZM, Liu YL (2008) An amplitude-frequency study of turbulent scaling intermittency using Empirical Mode Decomposition and Hilbert spectral analysis. Europhys Lett 84(4)Google Scholar
  16. Lee I, Sung HJ (2001) Characteristics of wall-pressure fluctuations in separated and reattaching flows over a backward-facing step; part I. Time-mean statistics and cross-spectral analyses. Exp Fluids 30:262CrossRefGoogle Scholar
  17. Lei Y, He Z, Zi Y (2009) Application of the EEMD method to rotor fault diagnosis of rotating machinery. Mech Syst Signal Process 23(4):1327CrossRefGoogle Scholar
  18. Lueptow RM (1995) Transducer resolution and the turbulent wall pressure spectrum. J Acoust Soc Am 97(1):370CrossRefGoogle Scholar
  19. Panton RL, Robert G (1994) The wavenumber-phase velocity representation for the turbulent wall-pressure spectrum. J Fluids Eng 116:447CrossRefGoogle Scholar
  20. Schlichting H (1979) Boundary–Layer theory, 7th edn. McGraw-Hill, New-YorkzbMATHGoogle Scholar
  21. Suh J, Frankel SH, Mongeau L, Plesniak MW (2006) Compressible large eddy simulations of wall-bounded turbulent flows using a semi-implicit numerical scheme for low mach number aeroacoustics. J Comput Phys 215(2):526zbMATHCrossRefMathSciNetGoogle Scholar
  22. Wu ZH, Huang NE (2009) Ensemble Empirical Mode Decomposition: a noise-assisted data analysis method. Adv Adapt Data Anal 1:1CrossRefGoogle Scholar
  23. Zhou X, Zhao H, Jiang T (2009) Adaptive analysis of optical fringe patterns using Ensemble Empirical Mode Decomposition algorithm. Optics Lett 34(13):2033CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Sébastien Debert
    • 1
  • Marc Pachebat
    • 2
    • 3
    Email author
  • Vincent Valeau
    • 1
  • Yves Gervais
    • 1
  1. 1.UPR 3346, Département Fluides, Thermique, Combustion ESIPInstitut P’, CNRS, Université de Poitiers, ENSMAPoitiersFrance
  2. 2.PSA-Peugeot-Citroën R&DVélizy-Villacoublay CedexFrance
  3. 3.SAI-Acoustique IndutrielleMassy CedexFrance

Personalised recommendations