Experiments in Fluids

, Volume 50, Issue 2, pp 285–300 | Cite as

Anatomy of a laminar starting thermal plume at high Prandtl number

  • Anne DavailleEmail author
  • Angela Limare
  • Floriane Touitou
  • Ichiro Kumagai
  • Judith Vatteville
Research Article


We present an experimental study of the dynamics of a plume generated from a small heat source in a high Prandtl number fluid with a strongly temperature-dependent viscosity. The velocity field was determined with particle image velocimetry, while the temperature field was measured using differential interferometry and thermochromic liquid crystals. The combination of these different techniques run simultaneously allows us to identify the different stages of plume development, and to compare the positions of key-features of the velocity field (centers of rotation, maximum vorticity locations, stagnation points) respective to the plume thermal anomaly, for Prandtl numbers greater than 103. We further show that the thermal structure of the plume stem is well predicted by the constant viscosity model of Batchelor (Q J R Met Soc 80: 339–358, 1954) for viscosity ratios up to 50.


Particle Image Velocimetry Viscosity Ratio Thermal Plume High Prandtl Number Plume Dynamic 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work has benefited from discussions with Neil Ribe, Eric Mittelsteadt, Peter van Keken, and Béatrice Guerrier. It was funded by program DyETI of INSU/CNRS, the French ANR “BEGDY” and the collaboration between IPGP in Paris and ERI in Tokyo. The manuscript has been improved, thanks to the constructive comments of two anonymous reviewers.

Supplementary material

Movie 1: RUN1. On the left side of the screen is the left half of the plume seen by differential interferometry, and on the right side is the other half of the plume followed by the thermochromic liquid crystals isotherms. The total duration of the movie is 600 s (1782 KB)

348_2010_924_MOESM2_ESM.mp4 (1.7 mb)
Movie 2: RUN2. On the left side of the screen, the whole plume is imaged by its thermochromic liquid crystals isotherms, while on the right side, the plume head is followed by differential interferometry. The duration of the movie is 940 s. (1693 KB)


  1. Batchelor GK (1954) Heat convection and buoyancy effects in fluids. Q J R Met Soc 80: 339–358CrossRefGoogle Scholar
  2. Boxman RL, Shlien DJ (1978) Interferometric measurement technique for the temperature field of axisymmetric buoyant phenomena. Appl Opt 17: 2788–2793CrossRefGoogle Scholar
  3. Chay A, Shlien DJ (1986) Scalar field measurements of a laminar starting plume cap using digital processing of interferograms. Phys Fluids 29: 2358–2366CrossRefGoogle Scholar
  4. Couliette DL, Loper DE (1995) Experimental, numerical and analytical models of mantle starting plumes. Phys Earth Planet Inter 92: 143–167CrossRefGoogle Scholar
  5. Dabiri D, Gharib M (1991) Digital particle image thermometry: the method and implementation. Exp Fluids 11: 77–86CrossRefGoogle Scholar
  6. Dabiri D (2009) Digital liquid crystal particle thermometry/velocimetry (DLCPT/V)—a review. Exp Fluids 46(2): 191–241CrossRefGoogle Scholar
  7. Davaille A, Jaupart C (1993) Transient high-Rayleigh number thermal convection with large viscosity variations. J Fluid Mech 253: 141–166CrossRefGoogle Scholar
  8. Davaille A, Vatteville J (2005) On the transient nature of mantle plumes. Geophys Res Lett 32: L14309 doi: 10.1029/2005GL023029 CrossRefGoogle Scholar
  9. Davaille A, Limare A (2007) Laboratory studies on mantle convection. In: Bercovici D, Schubert G (eds) Treatise of geophysics. Elsevier, Amsterdam, pp 89–165Google Scholar
  10. Davaille A, Androvandi S, Vatteville J, Limare A, Vidal V, Lebars M (2008) Thermal boundary layer instabilities in viscous fluids. In: ISFV13—13th International symposium on flow visualization, July 1–4, 2008, Nice, France, p 12, available at
  11. Fuji T (1963) Theory of the steady laminar natural convection above a horizontal line heat source and a point heat source. Int J Heat Mass Transf 6: 597–606CrossRefGoogle Scholar
  12. Fujisawa N, Adrian R (1999) Three-dimensional temperature measurement in turbulent thermal convection by extended range scanning liquid crystal thermometry. J Vis 1: 355–364CrossRefGoogle Scholar
  13. Gebhart B, Pera L, Schorr WA (1970) Steady laminar natural convection plumes above a horizontal line heat source. Int J Heat Mass Tranf 13: 161–171zbMATHCrossRefGoogle Scholar
  14. Griffiths RW (1986) Thermals in extremely viscous fluids, including the effects of temperature dependent viscosity. J Fluid Mech 166: 115–138CrossRefGoogle Scholar
  15. Griffiths RW, Campbell IH (1990) Stirring and structure in mantle starting plumes. Earth Planet Sci Lett 99: 66–78CrossRefGoogle Scholar
  16. Happel J, Brenner H (1973) Low Reynolds number hydrodynamics. Noordhoff, LeydenGoogle Scholar
  17. Kaminski E, Jaupart C (2003) Laminar starting plumes in high-Prandtl-number fluids. J Fluid Mech 478: 287–298zbMATHCrossRefGoogle Scholar
  18. Kumagai I (2002) On the anatomy of mantle plumes: effect of the viscosity ratio on entrainment and stirring. Earth Planet Sci Lett 198: 211–224CrossRefGoogle Scholar
  19. Kumagai I, Davaille A, Kurita K (2007) On the fate of thermal plumes at density interface, earth planet. Sci Lett 254: 180–193Google Scholar
  20. Kumagai I, Davaille A, Kurita K, Stutzmann E (2008) Mantle plumes: thin, fat, successful, or failing? Constraints to explain hot spot volcanism through time and space, Geophys. Res Lett 35: L16301
  21. Kelley JG, Hargreaves RA (1970) A rugged inexpensive shearing interferometer Appl Opt 9: 948–952CrossRefGoogle Scholar
  22. Laudenbach N, Christensen UR (2001) An optical method for measuring temperature in laboratory models of mantle plumes. Geophys J Int 145: 528–534CrossRefGoogle Scholar
  23. Le Bars M, Davaille A (2002) Stability of thermal convection in two superimposed miscible viscous fluids. J Fluid Mech 471: 339–363zbMATHCrossRefMathSciNetGoogle Scholar
  24. Limare A, Kumagai I, Vatteville J, Davaille A (2008) Thermal plumes visualisation: differential interferometry versus thermochromic liquid crystals, ISFV13—13th international symposium on flow visualization, July 1–4, 2008, Nice, France, p 12, available at
  25. Morris S, Canright DR (1984) A boundary-layer analysis of Benard convection with strongly temperature-dependent viscosity. Phys Earth Planet Inter 36: 355–373CrossRefGoogle Scholar
  26. Morton BR, Taylor GI, Turner JS (1956) Turbulent gravitational convection from maintained and instantaneous sources. Proc R Soc Lond A 234:1–23Google Scholar
  27. Moses E, Zocchi G, Libchaber A (1993) An experimental study of laminar plumes. J Fluid Mech 251: 581–601CrossRefGoogle Scholar
  28. Olson P, Singer H (1985) Creeping plumes. J Fluid Mech 158: 511–531CrossRefGoogle Scholar
  29. Olson P, Schubert G, Anderson C (1993) Structure of axisymmetric plumes. J Geophys Res 98: 6829–6844CrossRefGoogle Scholar
  30. Pretzler G, Jäger H, Neger T (1993) High-accuracy differential interferometry for the investigation of phase objects. Meas Sci Technol 4: 649–658CrossRefGoogle Scholar
  31. Rhee H, Koseff J, Street R (1984) Flow visualization of a recirculating flow by rheoscopic and liquid crystal techniques. Exp Fluids 2: 57–64CrossRefGoogle Scholar
  32. Rogers MC, Morris SW (2009) Natural versus forced convection in laminar starting plumes. Phys Fluids 21: 083601CrossRefGoogle Scholar
  33. Sernas V, Fletcher LS (1970) A schlieren interferometer method for heat transfer studies. J Heat Transf 92: 202–204CrossRefGoogle Scholar
  34. Shlien DJ (1976) Some laminar thermal and plume experiments. Phys Fluids 19: 1089–1098CrossRefGoogle Scholar
  35. Shlien DJ, Boxman RL (1979) Temperature field measurement of an axisymmetric laminar plume. Phys Fluids 22(4): 631–634CrossRefGoogle Scholar
  36. Shlien DJ, Brosh A (1979) Velocity field measurements of a laminar thermal. Phys Fluids 22: 1044–1053CrossRefGoogle Scholar
  37. Shlien DJ, Boxman RL (1981) Laminar starting plume temperature field measurement. Intl J Heat Mass Transf 24: 919–930CrossRefGoogle Scholar
  38. Tanny J, Shlien DJ (1985) Velocity field measurements of a laminar starting plume. Phys Fluids 28: 1027–1032CrossRefGoogle Scholar
  39. Turner JS (1962) The starting plume in neutral surroundings. J Fluid Mech 13:356–368zbMATHCrossRefGoogle Scholar
  40. van Keken PE (1997) Evolution of starting mantle plumes: a comparison between laboratory and numerical models. Earth Planet Sci Lett 148: 1–14CrossRefGoogle Scholar
  41. van Keken P, King S, Schmeling H, Christensen U, Neumeister D, Doin M-P (1997) A comparison of methods for the modeling of thermochemical convection. J Geophys Res 102(B10): 22477–22495CrossRefGoogle Scholar
  42. Vasquez PA, Perez AT, Castellanos A (1996) Thermal and electrohydrodynamics plumes. A comparative study. Phys Fluids 8: 2091–2096CrossRefGoogle Scholar
  43. Vatteville J, van Keken P, Limare A, Davaille A (2009) Starting laminar plumes: comparison of laboratory and numerical modeling. Geochem Geophys Geosyst 10: Q12013 doi: 10.1029/2009GC002739 CrossRefGoogle Scholar
  44. Vest CM (1975) Interferometry of strongly refracting axisymmetric phase objects. Appl Opt 14: 1601–1606CrossRefGoogle Scholar
  45. Whitehead JA, Luther DS (1975) Dynamics of laboratory diapir and plume models. J Geophys Res 80: 705–717CrossRefGoogle Scholar
  46. Whittaker RJ, Lister JR (2006a) Steady axisymmetric creeping plumes above a planar boundary. Part I: a point source. J Fluid Mech 567: 361–378zbMATHCrossRefMathSciNetGoogle Scholar
  47. Whittaker RJ, Lister JR (2006b) Steady axisymmetric creeping plumes above a planar boundary. Part II: a distributed source. J Fluid Mech 567: 379–397zbMATHCrossRefMathSciNetGoogle Scholar
  48. Whittaker RJ, Lister JR (2008) The self-similar rise of a buoyant thermal in very viscous flow. J Fluid Mech 606: 295–324zbMATHCrossRefMathSciNetGoogle Scholar
  49. Willert C, Gharib M (1991) Digital particle image thermometry. Exp Fluids 10: 181–193CrossRefGoogle Scholar
  50. Worster MG (1986) The axisymmetric laminar plumes: asymptotic solution for large Prandtl number. Stud Appl Math 75: 139–152zbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Anne Davaille
    • 1
    Email author
  • Angela Limare
    • 2
  • Floriane Touitou
    • 1
  • Ichiro Kumagai
    • 2
    • 3
  • Judith Vatteville
    • 2
    • 4
  1. 1.Laboratoire FAST, CNRS/UPMC/U-PSudOrsay cedexFrance
  2. 2.Dynamique des Fluides Géologiques, IPGPParis cedex 05France
  3. 3.Division of Energy and Environmental System, School of EngineeringHokkaido UniversityKita-kuJapan
  4. 4.Department of Mechanical EngineeringUniversity of ThessalyLeoforos Athinon, Pedion AreosGreece

Personalised recommendations