Experiments in Fluids

, Volume 49, Issue 4, pp 961–968 | Cite as

Absolute diode laser-based in situ detection of HCl in gasification processes

  • P. Ortwein
  • W. Woiwode
  • S. Fleck
  • M. Eberhard
  • T. Kolb
  • S. Wagner
  • M. Gisi
  • V. Ebert
Research Article

Abstract

The release of HCl is an important parameter for industrial combustion and gasification processes, which must be determined in the ppm range for active process control and optimization. Based on a low power vertical-cavity surface-emitting laser (VCSEL) at 1.74 μm, we developed a new tuneable diode laser absorption spectrometer for calibration-free, absolute in situ HCl detection using the H35Cl (2 ← 0) R(3) absorption line with minimized cross-sensitivity to CO2 and H2O. The spectrometer was applied to in situ measurements in a gasification process (T = 1,130°C, P = 1 atm, L = 28 cm) and yielded an optical resolution of 2.3·10−4, i.e. a HCl sensitivity of 45 ppm (13 ppm·m).

References

  1. Bachmann A, Arafin S, Kashani-Shirazi K (2009) Single-mode electrically pumped GaSb-based VCSELs emitting continuous-wave at 2.4 and 2.6 μm. New J Phys 11(12):1367–2630CrossRefGoogle Scholar
  2. Balat M, Balat M, Kirtay E, Balat H (2009) Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 2: Gasification systems. Energy Convers and Manage 50(12):3158–3168. doi:10.1016/j.enconman.2009.08.013 CrossRefGoogle Scholar
  3. Bjoroey O, Haugholt KH, Jäger T (1996) Diode laser spectroscopy of gaseous HCl. Quantum Electron 26(12):1090–1092. doi:10.1070/QE1996v026n12ABEH000880 CrossRefGoogle Scholar
  4. Corsi C, Inguscio M, Chudzynski S, Ernst K, D’Amato F, De Rosa M (1999) Detection of HCl on the first and second overtone using semiconductor diode lasers at 1.7 μm and 1.2 μm. Appl Phys B 68(2):267–269. doi:10.1007/s003400050616 CrossRefGoogle Scholar
  5. Dodge LG, and Biaglow JA (1986) Effect of elevated temperature and pressure on sprays form simplex swirl atomizer. Journal of Engineering for Gas Turbines and Power 108(1):209–215Google Scholar
  6. Ebert V, Wolfrum J (2001) Absorption spectroscopy. In: Mayinger F, Feldmann O (eds) Optical measurements—techniques and applications. Springer, Heidelberg, pp 227–265Google Scholar
  7. Ebert V, Teichert H, Strauch P, Kolb T, Seifert H, Wolfrum J (2005) Sensitive in situ detection of CO and O2 in a rotary kiln-based hazardous waste incinerator using 760 nm and new 2.3 μm diode lasers. Proc Combust Inst 30(1):1611–1618. doi:10.1016/j.proci.2004.08.224 CrossRefGoogle Scholar
  8. Hartmann H, Böhm T, Maier L (2007) Naturbelassene biogene Festbrennstoffe-umweltrelevante Eigenschaften und Einflussmöglichkeiten. Schriftenreihe “Materialien” des Bayerischen Staatsministeriums für Umwelt, Gesundheit und Verbraucherschutz 154Google Scholar
  9. Henrich E, Dinjus E, Kögel A, Raffelt K, Stahl R, Weirich F (2004) A two stage process for synfuel from biomass. ScientificCommons. http://opac.fzk.de:81/de/oai_frm.html?titlenr=57073&server=//127.0.0.1&port=81
  10. Kilgallon P, Simms NJ, Oakey JE (2002). Fate of trace contaminants from biomass fuels in gasification systems. Proceedings of the 7th Liège Conference, Part I, Materials for Advanced Power Engineering 2002, Schriften des Forschungszentrum Jülich, Reihe Energietechnik/Energy Technology Volume 21, Part I, ISBN 3-89336-312-2: 903ffGoogle Scholar
  11. Kim S, Klimecky P, Jeffries JB, Terry FL Jr, Hanson RK (2003) In situ measurements of HCl during plasma etching of poly-silicon using a diode laser absorption sensor. Meas Sci Technol 14(9):1662–1670CrossRefGoogle Scholar
  12. Kolb T, and Zarzalis N (2008) Entrained-Flow Gasification of Biomass-Based Slurry-Investigations on Atomization and Fuel Conversion. 7th High Temperature Air Combustion and Gasification International SymposiumGoogle Scholar
  13. Lackner M, Totschnig G, Winter F, Ortsiefer M, Amann MC, Shau R, Rosskopf J (2003a) Demonstration of methane spectroscopy using a vertical-cavity surface-emitting laser at 1.68 μm with up to 5 MHz repetition rate. Meas Sci Technol 14(1):101–106CrossRefGoogle Scholar
  14. Lackner M, Winter F, Totschnig G, Ortsiefer M, Rosskopf J, Amann MC, Shau R (2003b) Spektroskopischer einsatz neuer langwelliger (bis 2 μm) diodenlaser (VCSEL) für schwierige bedingungen. Technisches Messen 70(6):294–305CrossRefGoogle Scholar
  15. Leibold H, Hornung A, Seifert H (2008) HTHP syngas cleaning concept of two stage biomass gasification for FT synthesis. Powder Tech 180(1–2):265–270. doi:10.1016/j.powtec.2007.05.012 CrossRefGoogle Scholar
  16. Linnerud I, Kaspersen P, Jaeger T (1998) Gas monitoring in the process industry using diode laser spectroscopy. Appl Phys B 67(3):297–305. doi:10.1007/s003400050509 CrossRefGoogle Scholar
  17. Lytkine A, Jäger W, Tulip J (2006) Frequency tuning of long-wavelength VCSELs. Spectrochim Acta A Mol Biomol Spectrosc 63(5):940–946. doi:10.1016/j.saa.2005.11.004 CrossRefGoogle Scholar
  18. Mihalcea RM, Baer DS, Hanson RK (1997) Diode laser sensor for measurements of CO, CO2, and CH4 in combustion flows. Appl Opt 36(33):8745–8752. doi:10.1364/AO.36.008745 CrossRefGoogle Scholar
  19. Ortwein P, Gisi M, Eberhard M, Kolb T, Wagner S, Ebert V (2008) 2.3 μm diode laser absorption spectrometer for absolute CO measurements in gasification processes. VDI Ber 2047:195–200Google Scholar
  20. Ortwein P, Woiwode W, Wagner S, Gisi M, and Ebert V (2009) Laser-based measurements of line strength, self- and pressure-broadening coefficients of the H35Cl R(3) absorption line in the first overtone region for pressures up to 1 MPa. Applied Physics B: Lasers and Optics. doi:10.1007/s00340-009-3862-8
  21. Rieker G, Li H, Liu X, Jeffries JB, Hanson RK, Allen MG, Wehe SD, Mulhall PA, Kindle HS (2007) A diode laser sensor for rapid, sensitive measurements of gas temperature and water vapour concentration at high temperatures and pressures. Meas Sci Technol 18(5):1195–1204. doi:10.1088/0957-0233/18/5/005 CrossRefGoogle Scholar
  22. Rieker G, Jeffries J, Hanson R (2009) Measurements of high-pressure CO2 absorption near 2.0 μm and implications on tunable diode laser sensor design. Appl Phys B 94(1):51–63. doi:10.1007/s00340-008-3280-3 CrossRefGoogle Scholar
  23. Rothman LS, Gordon IE, Barbe A, Chris Benner D, Bernath PF, Birk M, Boudon V et al (2009) The HITRAN 2008 molecular spectroscopic database. J Quant Spectrosc Radiat Transf 110(9–10):533–572. doi:10.1016/j.jqsrt.2009.02.013 CrossRefGoogle Scholar
  24. Santo U, Kuhn D, Wiemer H-J, Pantouflas E, Zarzalis N, Seifert H, Kolb T (2007) Erzeugung von Synthesegas aus biomassestämmigen Slurries im Flugstromvergaser. Chemie Ingenieur Technik 79(5):651–656. doi:10.1002/cite.200700037 CrossRefGoogle Scholar
  25. Schlosser E, Fernholz T, Teichert H, Ebert V (2002) In situ detection of potassium atoms in high-temperature coal-combustion systems using near-infrared-diode lasers. Spectrochim Acta A Mol Biomol Spectrosc 58(11):2347–2359. doi:10.1016/S1386-1425(02)00049-5 CrossRefGoogle Scholar
  26. Schulz C, Dreizler A, Ebert V, and Wolfrum J (2007) Combustion diagnostics. In: Tropea C, Foss JF, Yarin A (eds) Springer handbook of experimental fluid mechanics, Springer, Hidleberg, pp 1241–1316Google Scholar
  27. Teichert H, Fernholz T, Ebert V (2003) Simultaneous In situ measurement of CO, H2O, and gas temperatures in a full-sized coal-fired power plant by near-infrared diode lasers. Appl Opt 42(12):2043–2051. doi:10.1364/AO.42.002043 CrossRefGoogle Scholar
  28. Totschnig G, Lackner M, Shau R, Ortsiefer M, Rosskopf J, Amann MC, Winter F (2003) 1.8 μm vertical-cavity surface-emitting laser absorption measurements of HCl, H2O and CH4. Meas Sci Technol 14(4):472–478CrossRefGoogle Scholar
  29. Upschulte BL, Sonnenfroh DM, Allen MG (1999) Measurements of CO, CO2, OH, and H2O in room-temperature and combustion gases by use of a broadly current-tuned multisection ingaasp diode laser. Appl Opt 38(9):1506–1512. doi:10.1364/AO.38.001506 CrossRefGoogle Scholar
  30. Wagner S, Fisher BT, Fleming JW, Ebert V (2009) TDLAS-based in situ measurement of absolute acetylene concentrations in laminar 2D diffusion flames. Proce Combust Inst 32(1):839–846. doi:10.1016/j.proci.2008.05.087 CrossRefGoogle Scholar
  31. Wunderle K, Fernholz T, Ebert V (2006) Selektion optimaler absorptionslinien für abstimmbare laserabsorptionsspektrometer. VDI Ber 1959:137–148Google Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • P. Ortwein
    • 1
    • 2
  • W. Woiwode
    • 1
  • S. Fleck
    • 4
  • M. Eberhard
    • 4
  • T. Kolb
    • 4
  • S. Wagner
    • 1
    • 3
  • M. Gisi
    • 1
  • V. Ebert
    • 1
    • 2
    • 3
  1. 1.Institute of Physical ChemistryUniversity of HeidelbergHeidelbergGermany
  2. 2.Physikalisch-Technische BundesanstaltBraunschweigGermany
  3. 3.Center of Smart InterfacesTechnische Universität DarmstadtDarmstadtGermany
  4. 4.ITC-TABKarlsruhe Institute of TechnologyEggenstein-LeopoldshafenGermany

Personalised recommendations