Experiments in Fluids

, Volume 49, Issue 6, pp 1339–1348 | Cite as

Transient growth instability cancelation by a plasma actuator array

  • Ronald E. Hanson
  • Philippe LavoieEmail author
  • Ahmed M. Naguib
  • Jonathan F. Morrison
Research Article


This study investigates an actuation scheme that can be integrated as part of a feedback control system in the laboratory for the purpose of negating the transient growth instability in a Blasius boundary layer and delaying transition. The actuators investigated here consist of a spanwise array of symmetric plasma actuators, which are capable of generating spanwise-periodic counter-rotating vortices. Three different actuator geometries are investigated, resulting in 45, 67 and 70% reduction of the total disturbance energy produced inside the boundary layer by an array of roughness elements. It is demonstrated that the control effectiveness of the actuators can be significantly improved by optimizing the geometry of the array.


Roughness Element Laminar Boundary Layer Plasma Actuator Transient Growth High Voltage Electrode 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The financial support of NSERC (Canada), EPSRC (UK, GR/S82947/01) and the Connaught Fund of the University of Toronto is acknowledged.


  1. Abdel-Rahman A, Tropea C, Slawson P, Strong A (1987) On temperature compensation in hot-wire anemometry. J Phys E Sci Instrum 20:315–319CrossRefGoogle Scholar
  2. Bewley TR, Liu S (1998) Optimal and robust control and estimation of linear paths to transition. J Fluid Mech 365(1):305–349zbMATHCrossRefMathSciNetGoogle Scholar
  3. Butler KM, Farrell BF (1992) Three-dimensional optimal perturbations in viscous shear flow. Phys Fluid Fluid Dynam 4(8):1637–1650CrossRefGoogle Scholar
  4. Corke TC, Post ML, Orlov DM (2007) SDBD plasma enhanced aerodynamics: concepts, optimization and applications. Progr Aero Sci 43:193–217CrossRefGoogle Scholar
  5. Fransson JHM, Brandt L, Talamelli A, Cossu C (2004) Experimental and theoretical investigation of the nonmodal growth of steady streaks in a flat plate boundary layer. Phys Fluid 16(10):3627–3638CrossRefGoogle Scholar
  6. Gaster M (2006) Active control of laminar boundary layer disturbances. In: Morrison JF, Birch DM, Lavoie P (eds) IUTAM symposium on flow control and MEMS, Springer, IUTAM Symposium London/EnglandGoogle Scholar
  7. Goldstein ME, Leib SJ (1993) Three-dimensional boundary-layer instability and separation induced by small-amplitude streamwise vorticity in the upstream flow. J Fluid Mech 246:21–41zbMATHCrossRefGoogle Scholar
  8. Goldstein ME, Sescu A (2008) Boundary-layer transition at high free-stream disturbance levels—beyond Klebanoff modes. J Fluid Mech 613:95–124zbMATHCrossRefMathSciNetGoogle Scholar
  9. Grundmann S, Tropea C (2007) Experimental transition delay using glow-discharge plasma actuators. Exp Fluids 42(4):653–657CrossRefGoogle Scholar
  10. Grundmann S, Tropea C (2008) Active cancellation of artificially introduced Tollmien Schlichting waves using plasma actuators. Exp Fluids 44:795–806CrossRefGoogle Scholar
  11. Jacobson SA, Reynolds WC (1998) Active control of streamwise vortices and streaks in boundary layers. J Fluid Mech 360(1):179–211zbMATHCrossRefGoogle Scholar
  12. Kim J, Bewley TR (2007) A linear systems approach to flow control. Annu Rev Fluid Mech 39:383–417CrossRefMathSciNetGoogle Scholar
  13. Kim J, Lim J (2000) A linear process in wall-bounded turbulent shear flows. Phys Fluid 12:1885–1888CrossRefMathSciNetGoogle Scholar
  14. Lavoie P, Naguib AM, Morrison JF (2008) Transient growth induced by surface roughness in a Blasius boundary layer. In: Proceedings of ICTAM, Adelaide, AustraliaGoogle Scholar
  15. Leib SJ, Wundrow DW, Goldstein ME (1999) Effect of free-stream turbulence and other vortical disturbances on a laminar boundary layer. J Fluid Mech 380:169–203zbMATHCrossRefMathSciNetGoogle Scholar
  16. Luchini P (2000) Reynolds-number-independent instability of the boundary layer over a flat surface: optimal perturbations. J Fluid Mech 404:289–309zbMATHCrossRefMathSciNetGoogle Scholar
  17. Lundell F (2007) Reactive control of transition induced by free-stream turbulence: an experimental demonstration. J Fluid Mech 585:41–71zbMATHCrossRefGoogle Scholar
  18. Lundell F, Monokrousos A, Brandt L (2009) Feedback control of boundary layer bypass transition: experimental and numerical progress. AIAA paper 2009–612Google Scholar
  19. Milling RW (1981) Tollmien-Schlichting wave cancellation. Phys Fluid 24:979–981CrossRefGoogle Scholar
  20. Moffat RJ (1988) Describing the uncertainties in experimental results. Exp Therm Fluid Sci 1:3–17CrossRefGoogle Scholar
  21. Moreau E (2007) Airflow control by non-thermal plasma actuators. J Phys D Appl Physics 40(3):605–636CrossRefGoogle Scholar
  22. Rathnasingham R, Breuer KS (2003) Active control of turbulent boundary layers. J Fluid Mech 495:209–233zbMATHCrossRefGoogle Scholar
  23. Reshotko E (2001) Transient growth: a factor in bypass transition. Phys Fluid 13(5):1067–1075CrossRefGoogle Scholar
  24. Ricco P, Wu X (2007) Response of a compressible laminar boundary layer to free-stream vortical disturbances. J Fluid Mech 587:97–138zbMATHCrossRefMathSciNetGoogle Scholar
  25. Roth JR, Sherman DM, Wilkinson SP (2000) Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA J 38:1166–1172CrossRefGoogle Scholar
  26. Saric WS, Reed HL, Kerschen EJ (2002) Boundary-layer receptivity to freestream disturbances. Annu Rev Fluid Mech 34:291–319CrossRefMathSciNetGoogle Scholar
  27. Schmid PJ, Henningson DS (1990) Stability and Transition in Shear Flows. Springer, BerlinGoogle Scholar
  28. Tropea C, Yarin AL, Foss JF (eds) (2007) Springer handbook of experimental fluid mechanics. Springer, BerlinGoogle Scholar
  29. White EB (2002) Transient growth of stationary disturbances in a flat plate boundary layer. Phys Fluid 14:4429–4439CrossRefGoogle Scholar
  30. Wu X, Choudhari M (2003) Linear and nonlinear instabilities of a Blasius boundary layer perturbed by streamwise vortices. Part 2. Intermittent instability induced by long-wavelength Klebanoff modes. J Fluid Mech 483:249–286zbMATHCrossRefMathSciNetGoogle Scholar
  31. Wundrow DW, Goldstein ME (2001) Effect on a laminar boundary layer of small-amplitude streamwise vorticity in the upstream flow. J Fluid Mech 426:229–262zbMATHCrossRefMathSciNetGoogle Scholar
  32. Zaki TA, Durbin PA (2005) Mode interaction and the bypass route to transition. J Fluid Mech 531:85–111zbMATHCrossRefMathSciNetGoogle Scholar
  33. Zaki TA, Durbin PA (2006) Continuous mode transition and the effects of pressure gradient. J Fluid Mech 563:357–388zbMATHCrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ronald E. Hanson
    • 1
  • Philippe Lavoie
    • 1
    Email author
  • Ahmed M. Naguib
    • 2
  • Jonathan F. Morrison
    • 3
  1. 1.University of Toronto Institute for Aerospace StudiesTorontoCanada
  2. 2.Department of Mechanical EngineeringMichigan State UniversityEast LansingUSA
  3. 3.Department of AeronauticsImperial College LondonLondonUK

Personalised recommendations