Advertisement

Experiments in Fluids

, Volume 50, Issue 1, pp 1–12 | Cite as

Double large field stereoscopic PIV in a high Reynolds number turbulent boundary layer

  • S. Coudert
  • J. M. Foucaut
  • J. Kostas
  • M. Stanislas
  • P. Braud
  • C. Fourment
  • J. Delville
  • M. Tutkun
  • F. Mehdi
  • P. Johansson
  • W. K. George
Research article

Abstract

An experiment on a flat plate turbulent boundary layer at high Reynolds number has been carried out in the Laboratoire de Mecanique de Lille (LML, UMR CNRS 8107) wind tunnel. This experiment was performed jointly with LEA (UMR CNRS 6609) in Poitiers (France) and Chalmers University of Technology (Sweden), in the frame of the WALLTURB European project. The simultaneous recording of 143 hot wires in one transverse plane and of two perpendicular stereoscopic PIV fields was performed successfully. The first SPIV plane is 1 cm upstream of the hot wire rake and the second is both orthogonal to the first one and to the wall. The first PIV results show a blockage effect which based on both statistical results (i.e. mean, RMS and spatial correlation) and a potential model does not seem to affect the turbulence organization.

Keywords

Particle Image Velocimetry Turbulent Boundary Layer Particle Image Velocimetry Image Stereoscopic Particle Image Velocimetry Streamwise Velocity Component 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work has been performed under the WALLTURB project. WALLTURB (A European synergy for the assessment of wall turbulence) is funded by the CEC under the 6th framework program (CONTRACT No: AST4CT2005516008). Part of the computations presented in this paper were carried out using the Grid’5000 experimental testbed, an initiative from the French Ministry of Research through the ACI GRID incentive action, INRIA, CNRS and RENATER and other contributing partners (see https://www.grid5000.fr).

References

  1. Adrian RJ (1991) Particle imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304CrossRefGoogle Scholar
  2. Adrian RJ (1997) Dynamic ranges of velocity and spatial resolution of particle image velocimetry. Meas Sci Technol 8(12):1393–1398CrossRefGoogle Scholar
  3. Adrian RJ, Meinhart CD, Tomkins CD (2000) Vortex organisation in the outer region of the turbulent boundary layer. J Fluid Mech 422(1)Google Scholar
  4. Carlier J, Stanislas M (2005) Experimental study of eddy structures in a turbulent boundary layer using particle image velocimetry. J Fluid Mech 535:143–188zbMATHCrossRefMathSciNetGoogle Scholar
  5. Coudert S, Schon JP (2001) Back projection algorithm with misalignment corrections for 2D3C stereoscopic PIV. Meas Sci Technol 12:1371–1381CrossRefGoogle Scholar
  6. Del Alamo JC, Jimenez J, Zandonade P, Moser RD (2006) Particle imaging techniques for experimental fluid mechanics. J Fluid Mech 561:329–358zbMATHCrossRefGoogle Scholar
  7. Foucaut JM, Carlier J, Stanislas M (2004) PIV optimization for the study of turbulent flow using spectral analysis. Meas Sci Technol 15:1046–1058CrossRefGoogle Scholar
  8. Foucaut JM, Coudert S, Kostas J, Stanislas M, Braud P, Fourment C, Delville J, Tutkun M, Mehdi, Johansson P, George W (2007) Study of the unsteady aspects of turbulence in the near wall region of a boundary layer using High Speed SPIV. In: 7th International symposium on particle image velocimetryGoogle Scholar
  9. Ganapathisubramani B, Hutchins N, Hambleton WT, Longmire EK, Marusic I (2005) Investigation of large-scale coherence in a turbulent boundary layer using two-point correlations. J Fluid Mech 524:57–80zbMATHCrossRefGoogle Scholar
  10. Ganapathisubramani B, Longmire EK, Marusic I (2006) Experimental investigation of vortex properties in a turbulent boundary layer. Phys Fluids 18(055105.114)Google Scholar
  11. Hambleton WT, Hutchins N, Marusic I (2006) Simultaneous orthogonalplane particle image velocimetry measurements in a turbulent boundary layer. J Fluid Mech 560:53–64zbMATHCrossRefGoogle Scholar
  12. Hoyez M (1990) Etude des caracteristiques instationnaires d’une couche limite turbulente de plaque plane sans gradient de pression. PhD thesis, UST Lille 1, Villeneuve d’Ascq, FranceGoogle Scholar
  13. Hutchins N, Hambleton WT, Marusic I (2005) Inclined cross-stream stereo particle image velocimetry measurements in turbulent boundary layers. J Fluid Mech 541(1):21–54. doi: 10.1017/S0022112005005872 zbMATHCrossRefGoogle Scholar
  14. Kahler CJ (2004) Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV. Exp Fluids 36:114–130CrossRefGoogle Scholar
  15. Kahler CJ, Kompenhans J (2000) Fundamentals of multiple plane stereo PIV. Exp Fluids (Suppl.):S70-S77Google Scholar
  16. Klebanoff PS (1955) Characteristics of turbulence in a boundary layer with zero pressure gradient. NACA report 1247Google Scholar
  17. Kostas J, Foucaut JM, Stanislas M (2005) Application of double SPIV on the near wall turbulence structure of an adverse pressure gradient turbulent boundary layer. In: 6th International symposium on particle image velocimetryGoogle Scholar
  18. Saikrishnan N, Marusic I, Longmire K (2006) Assessment of dual plane PIV measurements in wall turbulence using DNS data. Exp Fluids 41:265–278CrossRefGoogle Scholar
  19. Soloff S, Adrian R, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1454CrossRefGoogle Scholar
  20. Stanislas M, Carlier J, Foucaut JM, Dupont P (1999) Double spatial correlations, a new experimental insight into wall turbulence. Comptes Rendus de l’Academie des Sciences de Paris 327(2b):55–61zbMATHGoogle Scholar
  21. Tutkun M (2008) Structure of zero pressure gradient high reynolds number turbulent boundary layers. PhD thesis, Chalmers University of Technology, Goteborg, Sweden, ISBN: 978-91-7385-166-4Google Scholar
  22. Tutkun M, George WK, Delville J, Stanislas M, Johansson PBV, Foucaut JM, Coudert S (2009a) Two-point correlations in high Reynolds number flat plate turbulent boundary layers. J Turbul 10(21):1–23. doi: 10.1080/14685240902878045 Google Scholar
  23. Tutkun M, George WK, Foucaut JM, Coudert S, Stanislas M, Delville J (2009b) In situ calibration of hot wire probes in turbulent flows. Exp Fluids 46(4):617–629. doi: 10.1007/s00348-008-0587-0 CrossRefGoogle Scholar
  24. Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8(12):1379–1392CrossRefGoogle Scholar
  25. Willert C (1997) Stereoscopic digital particle image velocimetry for applications in wind tunnel flows. Meas Sci Technol 8:1465–1479CrossRefGoogle Scholar
  26. Willert C, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. Coudert
    • 1
  • J. M. Foucaut
    • 1
  • J. Kostas
    • 1
  • M. Stanislas
    • 1
  • P. Braud
    • 2
  • C. Fourment
    • 2
  • J. Delville
    • 2
  • M. Tutkun
    • 3
    • 4
  • F. Mehdi
    • 3
  • P. Johansson
    • 3
  • W. K. George
    • 3
  1. 1.Laboratoire de Mecanique de Lille (LML, UMR 8107), Boulevard Paul LangevinCite ScientifiqueVilleneuve d’Ascq CedexFrance
  2. 2.Laboratoire d’Etudes AerodynamiquesPoitiersFrance
  3. 3.Chalmers University of TechnologyGothenburgSweden
  4. 4.Norwegian Defence Research Establishment, FFISkedsmoNorway

Personalised recommendations