Experiments in Fluids

, Volume 48, Issue 3, pp 369–393 | Cite as

Variational fluid flow measurements from image sequences: synopsis and perspectives

  • Dominique Heitz
  • Etienne Mémin
  • Christoph Schnörr
Review Article


Variational approaches to image motion segmentation has been an active field of study in image processing and computer vision for two decades. We present a short overview over basic estimation schemes and report in more detail recent modifications and applications to fluid flow estimation. Key properties of these approaches are illustrated by numerical examples. We outline promising research directions and point out the potential of variational techniques in combination with correlation-based PIV methods, for improving the consistency of fluid flow estimation and simulation.


  1. Adrian R (1991) Particle imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304CrossRefGoogle Scholar
  2. Adrian R (2005) Twenty years of particle velocimetry. Exp Fluids 39(2):159–169CrossRefGoogle Scholar
  3. Alvarez L, Castaño CA, Garcfa M, Krissian K, Mazorra L, Salgado A, Sánchez J (2008) Variational second order flow estimation for PIV sequences. Exp Fluids 44(2):291–304CrossRefGoogle Scholar
  4. Alvarez L, Castaño CA, Garcfa M, Krissian K, Mazorra L, Salgado A, Sánchez J (2009) A new energy-based method for 3d motion estimation of incompressible PIV flows. Comput Vis Image Underst 113(7):802–810CrossRefGoogle Scholar
  5. Amodei L, Benbourhim MN (1991) A vector spline approximation. J. Approx Theory 67:51–79CrossRefMathSciNetMATHGoogle Scholar
  6. Anderson B, Moore J (1979) Optimal filtering. Prentice Hall, Englewood Cliffs, NJGoogle Scholar
  7. Arad N, Dyn N, Reisfeld D, Yeshurun Y (1994) Image warping by radial basis functions application to facial expressions. Comput Vis Graph Image Process 56(2):161–172Google Scholar
  8. Arnaud E, Mémin E (2007) Partial linear Gaussian model for tracking in image sequences using sequential Monte Carlo methods. IJCV 74(1):75–102CrossRefGoogle Scholar
  9. Arnaud E, Mémin E, Sosa R, Artana G (2006) A fluid motion estimator for schlieren image velocymetry. In: European conference on computer vision, ECCV’06, Vol 3951. Graz. LNCS, AustriaGoogle Scholar
  10. Arulampalam M, Maskell S, Gordon N, Clapp T (2002) A tutorial on particle filters for online non-linear/non-Gaussian Bayesian tracking. IEEE Trans Signal Process 50(2):174–188CrossRefGoogle Scholar
  11. Aubert G, Kornprobst P (2006) Mathematical problems in image processing, 2nd edn. Springer, New YorkGoogle Scholar
  12. Bergen J, Burt P, Hingorani R, Peleg S (1992) A three-frame algorithm for estimating two-component image motion. IEEE Trans Pattern Anal Mach Intell 14(9):886–895CrossRefGoogle Scholar
  13. Berselli L, Iliescu T, Layton W (2006) Mathematics of large Eddy simulation of turbulent flows. Springer, New YorkMATHGoogle Scholar
  14. Bigün J, Grandlund G, Wiklund J (1991) Multidimentional orientation estimation with application to texture analysis and optical flow. IEEE Trans Pattern Anal Mach Intell 13:775–790CrossRefGoogle Scholar
  15. Black M, Rangarajan A (1996) On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int J Comput Vis 19(1):75–104CrossRefGoogle Scholar
  16. Bookstein F (1989) Principal warps: thin-plate splines and the decomposition of deformations. IEEE Trans Pattern Anal Mach Intell 11(6):567–585CrossRefMATHGoogle Scholar
  17. Brezzi F, Fortin M (1991) Mixed and hybrid finite element methods. Springer, New YorkMATHGoogle Scholar
  18. Brox T, Bruhn A, Papenberg N, Weickert J (2004) High accuracy optical flow estimation based on a theory for warping. In: European conference on computer vision, ECC’04. Prague, Czech Republic, pp 25–36Google Scholar
  19. Bruhn A, Weickert J, Kohlberger T, Schnörr C (2006) A multigrid platform for real-time motion computation with discontinuity-preserving variational methods. Int J Comput Vis 70(3):257–277CrossRefGoogle Scholar
  20. Chan T, Shen J (2005) Image processing and analysis. Cambridge University Press, CambridgeMATHGoogle Scholar
  21. Chong M, Soria J, Perry A, Chacin J, Cantwell B, Na Y (1998) Turbulence structures of wall-bounded shear flows found using DNS data. J Fluid Mech 357:225CrossRefMathSciNetMATHGoogle Scholar
  22. Chorin A (1973) Numerical study of slightly viscous flow. J Fluid Mech 57:785–796CrossRefMathSciNetGoogle Scholar
  23. Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97CrossRefGoogle Scholar
  24. Corpetti T, Héas P, Mémin E, Papadakis N (2008) Pressure image assimilation for atmospheric motion estimation. Tellus series A: dynamic meteorology and oceanography (in press)Google Scholar
  25. Corpetti T, Mémin E, Pérez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intell 24(3):365–380CrossRefGoogle Scholar
  26. Cottet G-H, Koumoutsakos P (2000) Vortex methods: theory and practice. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  27. Cuzol A, Mémin E (2005) A stochastic filter for fluid motion tracking. In: Proceedings of international conference on computer vision (ICCV’05). Beijing, ChinaGoogle Scholar
  28. Cuzol A, Hellier P, Mémin E (2007) A low dimensional fluid motion estimator. Int J Comput Vis 75(3):329–349CrossRefGoogle Scholar
  29. Cuzol A, Mémin E (2008) A stochastic filter technique for fluid flows velocity fields tracking. IEEE Trans Pattern Anal Mach Intell (in press)Google Scholar
  30. D’Adamo J, Papadakis N, Mémin E, G A (2007) Variational assimilation of POD low-order dynamical systems. J Turbul 8(9):1–22Google Scholar
  31. Dahm WJA, Su LK, Southerland KB (1992) A scalar imaging velocimetry technique for fully resolved four-dimensional vector velocity field measurements in turbulent flows. Phys Fluids 4(10):2191–2206CrossRefGoogle Scholar
  32. Doucet A, Godsill S, Andrieu C (2000) On sequential Monte Carlo sampling methods for Bayesian filtering. Stat Comput 10(3):197–208CrossRefGoogle Scholar
  33. Duchon J (1977) Splines minimizing rotation invariant seminorms in sobolev spaces. In: Schempp W, Zeller K (eds) Constructive Theory of Functions of several Variables,Vol 1. Berlin, Springer, pp 85–100CrossRefGoogle Scholar
  34. Elsinga G, Scarano F, Wieneke B, van Oudheusden B (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947CrossRefGoogle Scholar
  35. Enkelmann W (1988) Investigation of multigrid algorithms for the estimation of optical flow fields in image sequences. Comput Vis Graph Image Proces 43:150–177CrossRefGoogle Scholar
  36. Fitzpatrick J (1988) The existence of geometrical density-image transformations corresponding to object motion. Comput Vis. Graph. Image Process 44(2):155–174CrossRefMathSciNetGoogle Scholar
  37. Fleet D, Jepson A (1990) Computation of component image velocity from local phase information. Int J Comput Vis 5:77–104CrossRefGoogle Scholar
  38. Foroosh H, Zerubia J, Berthod M (2002) Extension of phase correlation to subpixel registration. IEEE Trans Image Process 11(3):188–200CrossRefGoogle Scholar
  39. Geman D, Reynolds G (1992) Constrained restoration and the recovery of discontinuities. IEEE Trans Pattern Anal Mach Intell 14(3):367–383CrossRefGoogle Scholar
  40. Girault V, Raviart P-A (1986) Finite element methods for Navier–Stokes equations. Springer, BerlinMATHGoogle Scholar
  41. Gordon N, Salmond D, Smith A (1993) Novel approach to non-linear/non-Gaussian Bayesian state estimation. IEEE Process-F 140(2):107–113Google Scholar
  42. Gui L, Merzkirch W (1996) A method of tracking ensemble of particle images. Exp Fluids 21:465–468CrossRefGoogle Scholar
  43. Gui L, Merzkirch W (2000) A comparative study of the MQD method and the several correlation-based PIV evaluation algorithms. Exp Fluids 28:36–44CrossRefGoogle Scholar
  44. Gunzburger M (2003) Perspectives in flow control and optimization. SIAMGoogle Scholar
  45. Haussecker H, Fleet D (2001) Computing optical flow with physical models of brightness variations. IEEE Trans Pattern Anal Mach Intell 23:661–673CrossRefGoogle Scholar
  46. Héas P, Mémin (2008) 3D motion estimation of atmospheric layers from image sequences. IEEE Trans Geosci Remote Sensing 46(8):385–2396CrossRefGoogle Scholar
  47. Héas P, Mémin E, Papadakis N, Szantai A (2007a) Layered estimation of atmospheric mesoscale dynamics from satellite imagery. IEEE Trans Geosci Remote Sensing 45(12):4087–4104CrossRefGoogle Scholar
  48. Héas P, Papadakis N, Mémin E (2007b) Time-consistent estimator of 2d/3d motion of atmospheric layers from pressure image. Technical Report 6292. INRIAGoogle Scholar
  49. Héas P, Mémin E, Heitz D, Mininni P (2009a) Bayesian selection of scaling laws for motion modeling in images. In: International conference on computer vision (ICCV). Kyoto, JapanGoogle Scholar
  50. Héas P, Heitz D, Mémin E (2009b) Multiscale regularization based on turbulent kinetic energy decay for PIV estimations with high spatial regularization. In: 8TH International symposium on particle image velocimetry-PIV09. Melbourne, Victoria, AustraliaGoogle Scholar
  51. Héas P, Mémin E, Heitz D, Mininni P (2009c) Evidence of turbulence power laws from image data. In: Turbulent mixing and beyond (TMB). Trieste, ItalyGoogle Scholar
  52. Heeger D (1988) Optical flow using spatiotemporal filters. Int J Comput Vis 1(4):279–302CrossRefGoogle Scholar
  53. Heitz D, Héas P, Mémin E, Carlier J (2008) Dynamic consistent correlation-variational approach for robust optical flow estimation. Exp Fluids 45(4):595–608CrossRefGoogle Scholar
  54. Hiptmair R (1999) Canonical construction of finite elements. Math Comput 68(228):1325–1346CrossRefMathSciNetMATHGoogle Scholar
  55. Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17:185–203CrossRefGoogle Scholar
  56. Huber P (1981) Robust statistics. John Wiley, LondonCrossRefMATHGoogle Scholar
  57. Hyman J, Shashkov M (1997a) Adjoint operators for the natural discretizations of the divergence, gradient and curl on logically rectangular grids. Appl Numer Math 25(4):413–442CrossRefMathSciNetMATHGoogle Scholar
  58. Hyman J, Shashkov M (1997b) Natural discretizations for the divergence, gradient, and curl on logically rectangular grids. Comput Math Appl 33(4):81–104CrossRefMathSciNetMATHGoogle Scholar
  59. Isambert T, Berroir J, Herlin I (2008) A multiscale vector spline method for estimating the fluids motion on satellite images. In: ECCV’08: European conference on computer vision. Marseille. Springer, FranceGoogle Scholar
  60. Jähne B (1993) Spatio-tempooral image processing. Lecture notes in computer science, Vol 751. Springer, New YorkGoogle Scholar
  61. Jähne B, Klar M, Jehle M (2007) Motion analysis. In: Tropea C, Yarin A, Foss J (eds) Springer handbook of experimental fluid mechanics Chap. 25.2. Springer, New York, pp 1464–1491Google Scholar
  62. Le-Dimet F-X, Talagrand O (1986) Variational algorithms for analysis and assimilation of meteorological observations: theoretical aspects. Tellus 38(A):97–110Google Scholar
  63. Leonard A (1980) Vortex methods for flow simulation. J Comput Phys 37:2385–2396CrossRefMathSciNetGoogle Scholar
  64. Lions J (1971) Optimal control of systems governed by partial differential equations. Springer, New YorkMATHGoogle Scholar
  65. Liu T, Shen L (2008) Fluid flow and optical flow. J Fluid Mech 614:253–291CrossRefMathSciNetMATHGoogle Scholar
  66. Lucas B, Kanade T (1981) An iterative image registration technique with an application to stereovision. In: International joint conference on artificial intelligence (IJCAI), pp 674–679Google Scholar
  67. Mansour NN, Ferziger JH, Reynolds WC (1978) Large-eddy simulation of a turbulent mixing layer. Technical Report TF-11, Thermosciences Division, Departmant of Mechanical Engineering, Standford UniversityGoogle Scholar
  68. Mémin E, Pérez P (1998) Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans Image Process 7(5):703–719CrossRefGoogle Scholar
  69. Mémin E, Pérez. P (2002) Hierarchical estimation and segmentation of dense motion fields. Int J Comput Vis 46(2):129–155CrossRefMATHGoogle Scholar
  70. Musse O, Heitz F, Armspach J (1999) 3D deformable image matching using multiscale minimization of global energy functions. In: Proceedings of conference on computer vision pattern rec., vol 2. Fort Collins, Colorado, pp 478–485Google Scholar
  71. Nobach H, Bodenschatz E (2009) Limitations of acuracy in PIV due to individual variations of particle image intensities. Exp Fluids 47:27–38CrossRefGoogle Scholar
  72. Okuno T, Nakaoka J (1991) Velocity field measurement by spatio-temporal derivative method. J Kansai Soc Naval Archit 215:69–74Google Scholar
  73. Papadakis N, Corpetti T, Mémin E (2007) Dynamically consistent optical flow estimation. In: International conference on computer vision (ICCV’07). Rio de Janeiro, BrazilGoogle Scholar
  74. Papadakis N, Mémin E (2008a) An optimal control technique for fluid motion estimation. SIAM J Imag Sci (in press)Google Scholar
  75. Papadakis N, Mémin E (2008b) A variational technique for time consistent tracking of curves and motion. J Math Imag Vis 31(1):81–103CrossRefGoogle Scholar
  76. Papenberg N, Bruhn A, Brox T, Didas S, Weickert J (2006) Highly accurate optic flow computation with theoretically justified warping. IJCV 67(2):141–158CrossRefGoogle Scholar
  77. Paragios N, Chen Y, Faugeras O (eds) (2005) The handbook of mathematical models in computer vision. Springer, New YorkGoogle Scholar
  78. Perry A, Chong M (1987) A description of eddy motions and flow patterns using critical-point concepts. Ann Rev Fluid Mech 19:125CrossRefGoogle Scholar
  79. Petra S, Schnörr C (2009) Tomopiv meets compressed sensing. Technical report. IWR, University of HeidelbergGoogle Scholar
  80. Petra S, Schröder A, Schnörr C (2009) 3D Tomography from few projections in experimental fluid mechanics. In: Nitsche W, Dobriloff C (eds) Imaging Measurement methods for flow analysis notes on numerical fluid mechanics and multidisciplinary design, vol. 106. Springer, New York, pp 63–72Google Scholar
  81. Quénot G, Pakleza J, Kowalewski T (1998) Particle image velocimetry with optical flow. Exp Fluids 25:177–189CrossRefGoogle Scholar
  82. Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimery—a practical guide. Springer, New YorkGoogle Scholar
  83. Rohr K, Fornefett M, Stiehl H (1999) Approximating thin plate splines for elastic registration: integration of landmark errors and orientation attributes. In: 16th International conference on information processing in medical imaging. LNCS 1613, Hungary, pp 252–265Google Scholar
  84. Ruhnau P, Schnörr C (2007) Optical stokes flow estimation: an imaging-based control approach. Exp Fluids 42:61–78CrossRefGoogle Scholar
  85. Ruhnau P, Kohlberger T, Nobach H, Schnörr C (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38:21–32CrossRefGoogle Scholar
  86. Ruhnau P, Stahl A, Schnörr C (2007) Variational estimation of experimental fluid flows with physics-based spatio-temporal regularization. Meas Sci Technol 18:755–763CrossRefGoogle Scholar
  87. Schnörr C (1991) Determining optical flow for irregular domains by minimizing quadratic functionals of a certain class. Int J Comput Vis 6(1):25–38CrossRefGoogle Scholar
  88. Simoncelli E (1993) Distributed representation and analysis of visual motion. PhD thesis, MITGoogle Scholar
  89. Srinivasan S, Chellappa R (1998) Optical flow using overlapped basis functions for solving global motion problems. In: Proceedings of European conference on computer vision. Freiburg, Germany, pp 288–304Google Scholar
  90. Stanislas M, Okamoto K, KShler CJ, Westerweel J, Scarano F (2008) Main results of the third international PIV challenge. Exp Fluids 45(1):27–71CrossRefGoogle Scholar
  91. Su LK, Dahm WJA (1996) Scalar imaging velocimetry measurements of the velocity gradient tensor field in turbulent flows. I. Assessment of errors. Phys Fluids 8(7):1869–1882CrossRefGoogle Scholar
  92. Sugii Y, Nishio S, Okuno T, Okamoto K (2000) A highly accurate iterative PIV technique using a gradient method. Meas Sci Technol 11:1666–1673CrossRefGoogle Scholar
  93. Suter D (1994) Motion estimation and vector splines. In: Conference on computer vision and pattern recognition. IEEE Computer Society Press, Los Alamitos, CA, USA, pp 939–942Google Scholar
  94. Szeliski R, Shum H-Y (1996) Motion estimation with quadtree splines. IEEE Trans Pattern Anal Mach Intell 18(12):1199–1210CrossRefGoogle Scholar
  95. Tokumaru PT, Dimotakis PE (1995) Image correlation velocimetry. Exp Fluids 19:1–15CrossRefGoogle Scholar
  96. Tretiak O, Pastor L (1984) Velocity estimation from image sequences with second order differential operators. In: Proceedings of 7th international conference on pattern recognition. Montreal, pp 16–19Google Scholar
  97. Wahba G (1990) Spline models for observational data. Society for Industrial and Applied Mathematics, PhiladelphiaMATHGoogle Scholar
  98. Weber J, Malik J (1995) Robust computation of optical flow in a multiscale differential framework. Int J Comput Vis 14(1):67–81CrossRefGoogle Scholar
  99. Weickert J, Schnörr C (2001) Variational optic flow computation with a spatio-temporal smoothness constraint. J Math Imag Vis 14(3):245–255CrossRefMATHGoogle Scholar
  100. Wu Y, Kanade T, Li C, Cohn J (2000) Image registration using wavelet-based motion model. Int J Comput Vis 38(2):129–152CrossRefMATHGoogle Scholar
  101. Yamamoto Y, Uemura T (2009) Robust particle image velocimetry using gradient method with upstream difference and downstream difference. Exp Fluids 46(4):659–670CrossRefGoogle Scholar
  102. Yuan J, Schnörr C, Mémin E (2007) Discrete orthogonal decomposition and variational fluid flow estimation. J Math Imag Vis 28:67–80CrossRefGoogle Scholar
  103. Yuille A, Grzywacz N (1988) The motion coherence theory. In: Proceedings of international conference on computer vision. Tarpon Springs, Florida, pp 344–353Google Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Dominique Heitz
    • 1
    • 2
  • Etienne Mémin
    • 3
  • Christoph Schnörr
    • 4
  1. 1.CemagrefRennesFrance
  2. 2.UR TEREUniversité européenne de BretagneRennesFrance
  3. 3.INRIARennesFrance
  4. 4.Department of Mathematics and Computer ScienceUniversity of HeidelbergHeidelbergGermany

Personalised recommendations