Experiments in Fluids

, Volume 48, Issue 6, pp 983–997 | Cite as

Three-dimensional, three-component wall-PIV

  • André Berthe
  • Daniel Kondermann
  • Carolyn Christensen
  • Leonid Goubergrits
  • Christoph Garbe
  • Klaus Affeld
  • Ulrich Kertzscher
Research article

Abstract

This paper describes a new time-resolved three-dimensional, three-component (3D-3C) measurement technique called wall-PIV. It was developed to assess near wall flow fields and shear rates near non-planar surfaces. The method is based on light absorption according to Beer–Lambert’s law. The fluid containing a molecular dye and seeded with buoyant particles is illuminated by a monochromatic, diffuse light. Due to the dye, the depth of view is limited to the near wall layer. The three-dimensional particle positions can be reconstructed by the intensities of the particle’s projection on an image sensor. The flow estimation is performed by a new algorithm, based on learned particle trajectories. Possible sources of measurement errors related to the wall-PIV technique are analyzed. The accuracy analysis was based on single particle experiments and a three-dimensional artificial data set simulating a rotating sphere.

References

  1. Adrian RJ, Yao CS (1985) Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. In: Proceedings of the international symposium on applications of laser anemometry to fluid mechanics, vol. 24, pp. 44–52Google Scholar
  2. Affeld K, Goubergrits L, Kertzscher U, Gadischke J, Reininger A (2004) Mathematical model of platelet deposition under flow conditions. Int J Artif Organs 27(8):699–708Google Scholar
  3. Atkinson CH, Dillon-Gibbons CJ, Herpin S, Soria J (2008) Reconstruction techniques for tomographic piv (tomo-piv) of a turbulent boundary layer. In: Proceedings of the 14th international symposium on applications of laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  4. Baker S, Roth S, Scharstein D, Black M, Lewis J, Szeliski R (2007) A database and evaluation methodology for optical flow. In: Proceedings of the international conference on computer vision, pp. 1–8Google Scholar
  5. Berthe A, Kondermann D, Christensen C, Goubergrits L, Kertzscher U (2007) Using single particles for the validation of a 3d-3c near wall measurement technique. In: The 7th international symposium particle image velocimetry. Rome, ItalyGoogle Scholar
  6. Berthe A, Weber S, Kondermann D, Goubergrits L, Kertzscher U (2008) Application of the wall-piv technique on cerebral aneurysm models. In: The 13th international symposium on flow visualization. Nice, FranceGoogle Scholar
  7. Brady MR (2006) Subpixel resolution schemes for multiphase flows. Master’s thesis, Virginia Polytechnic Institute and State UniversityGoogle Scholar
  8. Bruecker C (1995) Digital-particle-image-velocimetry (dpiv) in a scanning light-sheet: 3d starting flow around a short cylinder. Exp Fluids 19(4):255–263Google Scholar
  9. Buermen M, Pernus F, Likar B (2008) Led light sources: a survey of quality-affecting factors and methods for their assessment. Meas Sci Technol 19(12):122,002–122,017Google Scholar
  10. Cherukat P, Mclaughlin JB (1994) The inertial lift on a rigid sphere in a linear shear flow field near a flat wall. J Fluid Mech Digit Arch 263(1):1–18MATHGoogle Scholar
  11. Coleman Hugh W, Steele WG (1989) Experimentation and uncertainty analysis for engineers. Wiley-Interscience, New York, pp 42Google Scholar
  12. Cowen EA, Monismith SG, Cowen EA, Monismith SG (1997) A hybrid digital particle tracking velocimetry technique. Exp Fluids 22(3):199–211CrossRefGoogle Scholar
  13. Debaene P, Kertzscher U, Goubergrits L, Affelt K (2005) Visualization of a wall shear flow: Development of a new particle image interrogation method. J VISUAL-JAPAN 8:285–364CrossRefGoogle Scholar
  14. DFG Farbstoffkommission (1988) Farbstoffe fuer lebensmittel, 2nd edn. VCH Verlagsgesellschaft, Weinheim, GermanyGoogle Scholar
  15. Elsinga G, Scarano F, Wieneke B, van Oudheusden B (2006) Tomographic particle image velocimetry. Exp Fluids 41(6):933–947CrossRefGoogle Scholar
  16. Ethier CR, Steinman DA (1994) Exact fully 3d navier-stokes solutions for benchmarking. Int J Numer Methods Fluids 19(5):369–375MATHCrossRefGoogle Scholar
  17. Fomin NA (1998) Speckle Photography for Fluid Mechanics Measurements. Springer, HeidelbergMATHGoogle Scholar
  18. Goldsmith HL, Mason SG (1962) The flow of suspensions through tubes. i. single spheres, rods, and discs. J Colloid Sci 17(5):448–476CrossRefGoogle Scholar
  19. Goubergrits L, Affeld K, Fernandez-Britto J, Falcon L (2002) Atherosclerosis and flow in carotid arteries with authentic geometries. Biorheology 39(3-4):519–524Google Scholar
  20. Goubergrits L, Weber S, Petz C, Spuler A, Pöthke J, Berthe A, Hege H-C (2009) Wall-piv as a near wall flow validation tool for cfd. J Visual 12(3):241–250CrossRefGoogle Scholar
  21. Graff EC, Pereira F, Gharib M (2008) Defocusing digital particle image velocimetry: a volumetric dpiv technique for dual and single phase flows. In: Proceedings of the 14th international symposium on applications of laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  22. Hill D, Troolin D, Walters G, Lai W, Sharp K (2008) Volumetric 3-component velocimetry (v3v) measurements of the turbulent flow in stirred tank reactors. In: Proceedings of the 14th international symposium on applications of laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  23. Hinsch KD (2002) Holographic particle image velocimetry. Meas Sci Technol 13(7):R61–R72CrossRefGoogle Scholar
  24. Horn B, Schunck B (1981) Determining optical flow. Artif Intel 17:185–204Google Scholar
  25. Hui WH (1987) Exact solutions of the unsteady two-dimensional navier-stokes equations. Zeitschrift für Angewandte Mathematik und Physik (ZAMP) 38(5):689–702MATHCrossRefMathSciNetGoogle Scholar
  26. Jähne B (2002) Digital image processing, 5th edn. Springer Verlag, Berlin, pp 91–94MATHGoogle Scholar
  27. Jehle M, Jähne B (2008) A novel method for three-dimensional three-component analysis of flows close to free water surfaces. Exp Fluids 44(3):469–480CrossRefGoogle Scholar
  28. Jehle M, Jähne B, Kertzscher U (2006) Direct estimation of the wall shear rate using parametric motion models in 3d. Pattern recognition pp. 434–443Google Scholar
  29. Kaehler CJ, Kompenhans J (2000) Fundamentals of multiple plane stereo particle image velocimetry. Exp Fluids 29(7):S070–S077CrossRefGoogle Scholar
  30. Karnis A, Goldsmith HL, Mason SG (1963) Axial migration of particles in poiseuille flow. Nature 200(4902):159–160CrossRefGoogle Scholar
  31. Keane RD, Adrian RJ (1990) Optimization of particle image velocimeters. i. double pulsed systems. Meas Sci Technol 1(11):1202–1215CrossRefGoogle Scholar
  32. Keane RD, Adrian RJ, Zhang Y (1995) Super-resolution particle imaging velocimetry. Meas Sci Technol 6(6):754–768CrossRefGoogle Scholar
  33. Kertzscher U, Affeld K, Goubergrits L, Schade M (1999) A new method to measure the wall-shear rate in models of blood vessels. In: Proceedings of the European medical and biological engineering conference 1999, 2, pp. 1412–1413Google Scholar
  34. Kertzscher U, Berthe A, Goubergrits L, Affeld K (2008) Particle image velocimetry of a flow at a vaulted wall. Proceedings of the Institution of Mechanical Engineers, Part H: J Eng Med 222(4): 465–473CrossRefGoogle Scholar
  35. Khalili A, Rath HJ (1994) Analytical solution for a steady flow of enclosed rotating disks. Zeitschrift fr Angewandte Mathematik und Physik (ZAMP) 45(4):670–680MATHCrossRefMathSciNetGoogle Scholar
  36. Kim MC, Nam J, Lee CS (2006) Near-wall deposition probability of blood elements as a new hemodynamic wall parameter. Annal Biomed Eng 34(6):958–970CrossRefGoogle Scholar
  37. Kim S, Lee S (2008) Effect of particle number density in in-line digital holographic particle velocimetry. Exp Fluids 44(4):623–631CrossRefGoogle Scholar
  38. Köhler U, Marshall I, Robertson MB, Long Q, Xu XY, Hoskins PR (2001) Mri measurement of wall shear stress vectors in bifurcation models and comparison with cfd predictions. J Magn Reson Imag 14(5):563–573CrossRefGoogle Scholar
  39. Kondermann D, Kondermann C, Berthe A, Kertzscher U, Garbe C (2008) Motion estimation based on a temporal model of fluid flows. In: Proceedings of the 13th international symposium on flow visualization. Nice, FranceGoogle Scholar
  40. Lai W, Pan G, Menon R, Troolin D, Graff E, Gharib M, Pereira F (2008) Volumetric three-component velocimetry: a new tool for 3d flow measurement. In: Proceedings of the 14th international symposium on applications of laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  41. Loth E (2000) Numerical approaches for motion of dispersed particles, droplets and bubbles. Prog Energ Combust Sci 26(3):161–223CrossRefGoogle Scholar
  42. Maas HG, Gruen A, Papantoniou D (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15(2):133–146CrossRefGoogle Scholar
  43. Magnaudet J (2003) Small inertial effects on a spherical bubble, drop or particle moving near a wall in a time-dependent linear flow. J Fluid Mech 485:115–142MATHCrossRefGoogle Scholar
  44. Malik NA, Dracos T, Papantoniou DA (1993) Particle tracking velocimetry in three-dimensional flows. Exp Fluids 15(4):279–294CrossRefGoogle Scholar
  45. Mandel J (1984) The statistical analysis of experimental data. Dover Pubn Inc, Mineola, NYGoogle Scholar
  46. Marxen M, Sullivan PE, Loewen MR, Jähne B (2000) Comparison of gaussian particle center estimators and the achievable measurement density for particle tracking velocimetry. Exp Fluids 29(2):145–153CrossRefGoogle Scholar
  47. Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Tech 8(12):1406CrossRefGoogle Scholar
  48. Michaelides EE (2003) Hydrodynamic force and heat/mass transfer from particles, bubbles, and drops—the freeman scholar lecture. J Fluids Eng 125(2):209–238CrossRefGoogle Scholar
  49. Michaelis D, Wieneke B (2008) Comparison between tomographic piv and stereo piv. In: Proceedings of the 14th international symposium on applications of laser techniques to fluid mechanics. Lisbon, PortugalGoogle Scholar
  50. Modarress D, Svitek P, Wilson D (2005) Micro-optical sensor use in boundary layer flows with polymers and bubbles. In: Proceedings of the 2nd international symposium on seawater drag reductionGoogle Scholar
  51. Nobach H (2004) Accuracy of sub-pixel interpolation in piv and ptv image processing. Technical University of Darmstadt, Darmstadt, Germany, pp 114–130Google Scholar
  52. Nobach H, Honkanen M (2005) Two-dimensional gaussian regression for sub-pixel displacement estimation in particle image velocimetry or particle position estimation in particle tracking velocimetry. Exp Fluids 38(4):511–515CrossRefGoogle Scholar
  53. Park H, Moore JA, Trass O, Ojha M (1999) Laser photochromic velocimetry estimation of the vorticity and pressure field–two-dimensional flow in a curved vessel. Exp Fluids 26(1):55–62CrossRefGoogle Scholar
  54. Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry. A practical guide. Springer, HeidelbergGoogle Scholar
  55. Ruck B (2003) Color-coded tomography. In: 7th Int. symp. on fluid control, measurement and visualizationGoogle Scholar
  56. Ruhnau P, Schnörr C (2007) Optical stokes flow estimation: an imaging-based control approach. Exp Fluids 42(1):61–78CrossRefGoogle Scholar
  57. Schneider T, Goubergrits L, Kertzscher U, Paschereit Christian O (2008) Development of a new 3d shear stress measurement technique using the birefringence. In: Proceedings of the 14th international symposium on applications of laser techniques to fluid mechanicsGoogle Scholar
  58. Schroeder A, Geisler R, Elsinga G, Scarano F, Dierksheide U (2008) Investigation of a turbulent spot and a tripped turbulent boundary layer flow using time-resolved tomographic piv. Exp Fluids 44(2):305–316CrossRefGoogle Scholar
  59. Segre G, Silberberg A (1962a) Behaviour of macroscopic rigid spheres in poiseuille flow part 1. determination of local concentration by statistical analysis of particle passages through crossed light beams. J Fluid Mech Digit Arch 14(01), 115–135 M3. doi:10.1017/S002211206200,110X
  60. Segre G, Silberberg A (1962b) Behaviour of macroscopic rigid spheres in poiseuille flow part 2. experimental results and interpretation. J Fluid Mech Digit Arch 14(01):136–157 M3. doi:10.1017/S0022112062001,111
  61. Sheplak M, Cattafesta L, Nishida T (2004) Mems shear stress sensors: promise and progress. In: 24th AIAAA aerodynamic measurement technology testing conference. Florida Univ Gainesville mechanical and aerospace engineeringGoogle Scholar
  62. Takeda Y (1999) Ultrasonic doppler method for velocity profile measurement in fluid dynamics and fluid engineering. Exp Fluids 26(3):177–178CrossRefGoogle Scholar
  63. Triep M, Brücker C, Schröder W (2005) High-speed piv measurements of the flow downstream of a dynamic mechanical model of the human vocal folds. Exp Fluids 39(2):232–245CrossRefGoogle Scholar
  64. Tropea C, Yarin AL, Foss JF (ed) (2007) Springer Handbook of Experimental Fluid Mechanics. Springer-Verlag, Berlin, Heidelberg, GermanyGoogle Scholar
  65. Westerweel J (1993) Digital particle image velocimetry. Ph.D. thesis, Technical University of DelftGoogle Scholar
  66. Westerweel J (2000) Theoretical analysis of the measurement precision in particle image velocimetry. Exp Fluids 29(7):S003–S012CrossRefGoogle Scholar
  67. Xie MX, Wang XF, Cheng TO, Lu Q, Yuan L, Liu X (2005) Real-time 3-dimensional echocardiography: A review of the development of the technology and its clinical application. Prog Cardiovas Dis 48(3):209–225CrossRefGoogle Scholar
  68. Young JB, Hanratty TJ (1991) Trapping of solid particles at a wall in a turbulent flow. AIChE J 37(10):1529–1536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • André Berthe
    • 1
  • Daniel Kondermann
    • 2
  • Carolyn Christensen
    • 1
  • Leonid Goubergrits
    • 1
  • Christoph Garbe
    • 2
  • Klaus Affeld
    • 1
  • Ulrich Kertzscher
    • 1
  1. 1.Biofluid Mechanics LaboratoryCharité - Universitätsmedizin BerlinBerlinGermany
  2. 2.Digital Image Processing Research Group, Heidelberg Collaboratory for Image ProcessingUniversity of HeidelbergHeidelbergGermany

Personalised recommendations