Experiments in Fluids

, Volume 48, Issue 1, pp 121–131 | Cite as

Experiments in a floating water bridge

  • Jakob Woisetschläger
  • Karl Gatterer
  • Elmar C. Fuchs
Research Article

Abstract

In a high-voltage direct-current experiment, a watery connection formed between two beakers filled with deionized water, giving the impression of a ‘floating water bridge’. Having a few millimeters diameter and up to 2.5 cm length, this watery connection reveals a number of interesting phenomena currently discussed in water science. Focusing on optical measurement techniques, the flow through the bridge was visualized and data were recorded such as flow velocity and directions, heat production, density fluctuations, pH values, drag force and mass transfer. To provide a better understanding of the basic phenomena involved the discussion references related literature.

Notes

Acknowledgments

The authors gratefully acknowledge the support by the Institute of Analytical Chemistry and Food Chemistry, as well as by the Institute of Hydraulic Engineering and Water Resources Management, both at Graz University of Technology, for sharing the NANOpure system and the Photron high-speed camera, respectively, and the support by H. Eisenkölbl (Graz University of Technology). With great pleasure, the authors wish to thank Professors Cees Buisman (Wetsus - Centre of Excellence for Sustainable Water Technology), Emilio Del Giudice (Universitá di Milano), Franz Heitmeir (Graz University of Technology), Jan C.M. Marijnissen (Delft University of Technology) and Gerald H. Pollack (University of Washington) for the ongoing discussion on the water bridge phenomenon (in alphabetic order).

References

  1. Albrecht H-E, Borys M, Damaschke N, Tropea C (2003) Laser Doppler and phase Doppler measurement techniques. Springer, Heidelberg, ISBN 3-540-67838-7Google Scholar
  2. Arani R, Bono I, Del Giudice E, Preparata G (1995) QED coherence and the thermodynamics of water. Int J Mod Phys B 9:1813–1841CrossRefGoogle Scholar
  3. Armstrong WG (1893) The Newcastle literary and philosophical society, The Electrical Engineer pp 154–155, 10 February 1893Google Scholar
  4. Castellanos A (ed) (1998) Electrohydrodynamics, International Centre for Mechanical Sciences, CISM Courses and Lectures No. 380, Springer, Wien, ISBN 3-211-83137-1Google Scholar
  5. Chatzidimitriou-Dreismann CA, Redah TA, Streffer RMF, Mayers J (1997) Anomaleous deep inelastic neutron scattering from liquid H2O–D2O: evidence of nuclear quantum entanglement. Phys Rev Lett 79:2839–2842. doi: 10.1103/PhysRevLett.79.2839 CrossRefGoogle Scholar
  6. Chen F, Brown GM, Song M (2000) Overview of three-dimensional shape measurement using optical method. Opt Eng 39:10–22. doi: 10.1117/1.602438 CrossRefGoogle Scholar
  7. Chen XB, Xi JT, Jiang T, Jin Y (2008) Research and development of an accurate 3D shape measurement system based on fringe projection: model analysis and performance evaluation. Precision Eng 32:215–221. doi: 10.1016/j.precisioneng.2007.08.008 CrossRefGoogle Scholar
  8. Daba D (1972) The interpretation of the effect of climbing up electrodes of the dielectric liquids in stationary fields (the Sumoto effect). J Phys A Gen Phys 5:318–326. doi: 10.1088/0305-4470/5/2/013 CrossRefGoogle Scholar
  9. Del Giudice E (2006) Old and new views on the structure of matter and the special case of living matter. J Phys Conf Ser 67:012006. doi: 10.1088/1742-6596/67/1/012006 CrossRefGoogle Scholar
  10. Eggers J, Villermaux E (2008) Physics of liquid jets. Rep Prog Phys 71:036601. doi: 10.1088/0034-4885/71/3/036601 CrossRefGoogle Scholar
  11. Elmahdy AM, Mirnezami M, Finch JA (2008) Zeta potential of air bubbles in presence of frothers. Int J Miner Process 89:40–43. doi: 10.1016/j.minpro.2008.09.003 CrossRefGoogle Scholar
  12. Frood DG, Gallagher TJ (2006) Space-charge dielectric properties of water and aqueous electrolytes. J Mol Liquids 69:183–200. doi: 10.1016/S0167-7322(96)90013-6 Google Scholar
  13. Fuchs EC, Woisetschläger J, Gatterer K, Maier E, Pecnik R, Holler G, Eisenkölbl H (2007) The floating water bridge. J Phys D Appl Phys 40:6112–6114. doi: 10.1088/0022-3727/40/19/052 CrossRefGoogle Scholar
  14. Fuchs EC, Gatterer K, Holler G, Woisetschläger J (2008) Dynamics of the floating water bridge. J Phys D Appl Phys 41:185502 (5 pp). doi: 10.1088/0022-3727/41/18/185502 Google Scholar
  15. Fuchs EC, Bitschnau B, Woisetschläger J, Maier E, Beuneu B, Teixeira J (2009) Neutron scattering of a floating heavy water bridge. J Phys D Appl Phys 42:065502. doi: 10.1088/0022-3727/42/6/065502 CrossRefGoogle Scholar
  16. Gañán-Calvo AM (1997) On the theory of electrohydrodynamically driven capillary jets. J Fluid Mech 335:165–188MathSciNetMATHCrossRefGoogle Scholar
  17. Geissler PL, Dellago C, Chandler D, Hutter J, Parrinello M (2001) Autoionization in liquid water. Science 291:2121–2124. doi: 10.1126/science.1056991 CrossRefGoogle Scholar
  18. Grace JM, Marijnissen JCM (1994) A review of liquid atomization by electrical means. J Aerosol Sci 25:1005–1019. doi: 10.1016/0021-8502(94)90198-8 CrossRefGoogle Scholar
  19. Hartman RPA, Brunner DJ, Camelot DMA, Marijnissen JCM, Scarlett B (1999) Electrohydrodynamic atomization in the cone-jet mode physical modelling of the liquid cone and jet. J Aerosol Sci 30:823–849. doi: 10.1016/S0021-8502(99)00033-6 CrossRefGoogle Scholar
  20. Hassan SA, Hummer G, Lee YS (2006) Effects of electric fields on proton transport through water chains. J Chem Phys 124:204510. doi: 10.1063/1.2198820 CrossRefGoogle Scholar
  21. Head-Gordon T, Johnson ME (2006) Tetrahedral structure or chains for liquid water. Proc Natl Acad Sci USA 21:7973–7977. doi: 10.1073/pnas.0608020103 CrossRefGoogle Scholar
  22. Hynes JT (1999) The protean proton in water. Nature 397:565–567. doi: 10.1038/17487 CrossRefGoogle Scholar
  23. Jin F, Ye J, Hong LZ, Lam HF, Wu C (2007) Slow relaxation mode in mixtures of water and organic molecules: supramolecular structures or nanobubbles? J Phys Chem B 111(9):2255–2261. doi: 10.1021/jp068665w CrossRefGoogle Scholar
  24. Jorgensen WL, Tirado-Rives J (2005) Potential energy function for atomic-level simulations of water and organic and biomolecular systems. Proc Natl Acad Sci USA 102:6685–6690. doi: 10.1073/pnas.0408037102 CrossRefGoogle Scholar
  25. Kendall J (1916) The specific conductivity of pure water in equilibrium with atmospheric carbon dioxide. J Am Chem Soc 38:1480–1497CrossRefGoogle Scholar
  26. Klimov A, Pollack GH (2007) Visualization of charge–carrier propagation in water. Langmuir 23:11890–11895. doi: 10.1021/la701742v CrossRefGoogle Scholar
  27. Krasucki F (1966) Breakdown of liquid dielectrics. Proc Roy Soc A294:393–404Google Scholar
  28. Margulis MA, Margulis IM (2007) Current state of the theory of local electrification of cavitation bubbles. Russ J Phys Chem A 81:129–138. doi: 10.1134/S0036024407010232 CrossRefGoogle Scholar
  29. Marx D (2006) Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. Chem Phys Chem 7:1848–1872. doi: 10.1002/cphc.200600128 CrossRefGoogle Scholar
  30. Marx D, Tuckerman ME, Hutter J, Parrinello M (1999) The nature of the hydrated excess proton in water. Nature 397:601–602. doi: 10.1038/17579 CrossRefGoogle Scholar
  31. Melcher JR, Taylor GI (1969) Electrohydrodynamics: a review of the role of interfacial shear stresses. Annu Rev Fluid Mech 1:111–146. doi: 10.1146/annurev.fl.01.010169.000551 CrossRefGoogle Scholar
  32. Merzkirch W (1987) Flow visualization, 2nd edn. Academic Press, Orlando, ISBN 0-12-491351-2Google Scholar
  33. Mrázek J, Burda JV (2006) Can the pH value of water solutions be estimated by quantum mechanical calculations of small water clusters? J Chem Phys 125:194518. doi: 10.1063/1.2363383 CrossRefGoogle Scholar
  34. Naqwi AA, Durst F (1991) Light scattering applied to LDA and PDA measurements part 1: theory and numerical treatment. Part Part Syst Charact 8:245–258CrossRefGoogle Scholar
  35. Ohyama R, Kumeta M, Ueda A, Watson A, Chang JS (2005) A fundamental characteristic and image analysis of liquid flow in an AW type EHD pump. J Vis 8:339–346CrossRefGoogle Scholar
  36. Pollack GH (2001) Cells, gels and the engine of life. Ebener & Sons, Seattle WA, ISBN 0-9626895-2-1Google Scholar
  37. Prevenslik TV (1998) Dielectric polarization in the Planck theory of sonoluminescence. Ultrason Sonochem 5(3):93–105. doi: 10.1016/S1350-4177(98)00016-9 CrossRefGoogle Scholar
  38. Rai D, Kulkami AD, Pathak RK (2006) Water clusters (H2O)n, n = 6–8 in external electric fields. J Chem Phys 128:034310. doi: 10.1063/1.2816565 CrossRefGoogle Scholar
  39. Settles GS (2001) Schlieren and shadowgraph techniques. Springer, Heidelberg, ISBN 3-540-66155-7Google Scholar
  40. Stanley HE, Buldyrev SV, Franzese G, Giovambattista N, Starr FW (2005) Static and dynamic heterogeneities in water. Philos Trans R Soc A 363:509–523. doi: 10.1098/rsta.2004.1505 CrossRefGoogle Scholar
  41. Suslick KS, Flannigan DJ (2008) Inside a collapsing bubble: sonoluminescence and the conditions during cavitation. Annu Rev Phys Chem 59:659–683. doi: 10.1146/annurev.physchem.59.032607.093739 CrossRefGoogle Scholar
  42. Taylor FRS (1964) Disintegration of water drops in an electric field. Proc R Soc Lond A Math Phys Sci 280:383–397MATHCrossRefGoogle Scholar
  43. Tuckerman ME, Marx D, Parrinello M (2002) The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417:925–929. doi: 10.1038/nature00797 CrossRefGoogle Scholar
  44. Uhlig W (2005) Personal communication, laboratory of inorganic chemistry. ETH Hönggerberg, HCI, ZürichGoogle Scholar
  45. Xie GX, Luo JB, Liu SH, Zhang CH, Lu XC (2008) Micro-bubble phenomenon in nanoscale water-based lubricating film induced by external electric field. Tribol Lett 29:169–176. doi: 10.1007/s11249-007-9288-8 CrossRefGoogle Scholar
  46. Zahn M, Takada T (1983) High voltage electric field and space-charge distributions in highly purified water. J Appl Phys 54:4762–4775. doi: 10.1063/1.332810 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • Jakob Woisetschläger
    • 1
  • Karl Gatterer
    • 2
  • Elmar C. Fuchs
    • 3
  1. 1.Experimental Turbomachinery Research and Optical Measurement Group, Institute for Thermal Turbomachinery and Machine DynamicsGraz University of TechnologyGrazAustria
  2. 2.Institute of Physical and Theoretical ChemistryGraz University of TechnologyGrazAustria
  3. 3.Wetsus - Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands

Personalised recommendations