Experiments in Fluids

, 46:365 | Cite as

Torus generated by Escherichia coli

Letter

Abstract

The bioluminescence images of unstirred cultures show that lux reporter E. coli (0.10 mg biomass per ml of the broth medium) in 6.4–10 mm diameter circular containers induce center-fluid-rising toroidal convection of ≤1 mm/min. The bioconvective torus is stable in a Teflon vessel and is deformed by 3.2–4.4 mm wavelength azimuthal waves in polystyrene or glass vessels.

Notes

Acknowledgments

This work was supported by EC 6FP STREP project “FACEiT”, contract No. 018391 GOCE and the Lithuanian State Science and Studies Foundation project “BIOSA” N-19/2008.

References

  1. Bees M, Hill N (1997) Wavelengths of bioconvection patterns. J Exp Biol 200:1515–1526Google Scholar
  2. Berke AP, Turner L, Berg HC et al (2008) Hydrodynamic attraction of swimming microorganisms by surfaces. Phys Rev Lett 101:038102CrossRefGoogle Scholar
  3. Brenner MP, Levitov LS, Budrene EO (1998) Physical mechanisms for chemotactic pattern formation by bacteria. Biophys J 74:1677–1693CrossRefGoogle Scholar
  4. Budrene EO, Berg HC (1991) Complex patterns formed by motile cells of Escherichia coli. Nature 394:630–633CrossRefGoogle Scholar
  5. Budrene EO, Berg HC (1995) Dynamics of formation of symmetrical patterns by chemotactic bacteria. Nature 376:49–53CrossRefGoogle Scholar
  6. Cisneros LH, Cortez R, Dombrowski C et al (2007) Fluid dynamics of self-propelled microorganisms, from individuals to concentrated populations. Exp Fluids 43:737–753CrossRefGoogle Scholar
  7. Daniels R, Reynaert S, Hoekstra H et al (2006) Quorum signal molecules as biosurfactants affecting swarming in Rhizobium etli. Proc Natl Acad Sci USA 103:14965–14970CrossRefGoogle Scholar
  8. Dazin A, Dupont P, Stanislas M (2006) Experimental characterization of the instability of the vortex ring. Part I: linear phase. Exp Fluids 40:383–399CrossRefGoogle Scholar
  9. Fleming J, Imbalzano J, Kemkes D et al (2001) Material of construction for pharmaceutical and biotechnology processing: moving into the 21st century. Pharm Eng 21(6):34–44Google Scholar
  10. Greer LF, Szalay AA (2002) Imaging of light emission from the expression of luciferases in living cells and organisms: a review. Luminescence 17:43–74CrossRefGoogle Scholar
  11. Hill NA, Pedley TJ (2005) Bioconvection. Fluid Dyn Res 37:1–20MATHCrossRefMathSciNetGoogle Scholar
  12. Hill J, Kalkanci O, McMurry JL et al (2007) Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys Rev Lett 98:068101CrossRefGoogle Scholar
  13. Janosi IM, Kessler JO, Horvath VK (1998) Onset of bioconvection in suspension of Bacillus subtilis. Phys Rev E 58:4793–4800CrossRefGoogle Scholar
  14. Roda A, Pasini P, Mirasoli M et al (2004) Biotechnological applications of bioluminescence and chemiluminescence. Trends Biotechnol 22:295–303CrossRefGoogle Scholar
  15. Šimkus R (2006) Bioluminescent monitoring of turbulent bioconvection. Luminescence 21:77–80CrossRefGoogle Scholar
  16. Šimkus R, Csöregi E, Leth S et al (1999) Oscillatory luminescence from lux-gene engineered bacteria. Biotechnol Tech 13:529–532CrossRefGoogle Scholar
  17. Šimkus R, Meškienė R, Meškys R (2001) Ultradian rhythms and the lux-gene reporter system. Cell Biol Int 25:829–834CrossRefGoogle Scholar
  18. Šimkus R, Meškienė R, Leth S et al (2004) Adaptive responses to static conditions in nutrient-rich cultures of luminous Ralstonia eutropha. Biotechnol Lett 26:559–562CrossRefGoogle Scholar
  19. Winson MK, Swift S, Hill PJ et al (1998) Engineering the luxCDABE genes from Photorhabdus luminescens to provide a bioluminescent reporter for constitutive and promoter probe plasmids and mini-Tn5 constructs. FEMS Microbiol Lett 163:193–202CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • R. Šimkus
    • 1
  • V. Kirejev
    • 1
  • R. Meškienė
    • 1
  • R. Meškys
    • 1
  1. 1.Institute of BiochemistryVilniusLithuania

Personalised recommendations