Experiments in Fluids

, Volume 46, Issue 2, pp 191–241 | Cite as

Digital particle image thermometry/velocimetry: a review

Review Article

Abstract

Digital particle image thermometry/velocimetry (DPIT/V) is a relatively new methodology that allows for measurements of simultaneous temperature and velocity within a two-dimensional domain, using thermochromic liquid crystal tracer particles as the temperature and velocity sensors. Extensive research has been carried out over recent years that have allowed the methodology and its implementation to grow and evolve. While there have been several reviews on the topic of liquid crystal thermometry (Moffat in Exp Therm Fluid Sci 3:14–32, 1990; Baughn in Int J Heat Fluid Flow 16:365–375, 1995; Roberts and East in J Spacecr Rockets 33:761–768, 1996; Wozniak et al. in Appl Sci Res 56:145–156, 1996; Behle et al. in Appl Sci Res 56:113–143, 1996; Stasiek in Heat Mass Transf 33:27–39, 1997; Stasiek and Kowalewski in Opto Electron Rev 10:1–10, 2002; Stasiek et al. in Opt Laser Technol 38:243–256, 2006; Smith et al. in Exp Fluids 30:190–201, 2001; Kowalewski et al. in Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487–561, 2007), the focus of the present review is to provide a relevant discussion of liquid crystals pertinent to DPIT/V. This includes a background on liquid crystals and color theory, a discussion of experimental setup parameters, a description of the methodology’s most recent advances and processing methods affecting temperature measurements, and finally an explanation of its various implementations and applications.

Abbreviations

CCD

Charge-coupled device

CIE

Commission International de l’Éclairage

CLC

Cholesteric liquid crystal

CNLC

Chiral nematic liquid crystals

DPIT

Digital particle image thermometry

DPIT/V

Digital particle image thermometry/velocimetry

DPIV

Digital particle image velocimetry

HWA

Hot wire anemometry

LDA

Laser-Doppler anemometry

MTV&T

Molecular tagging velocimetry and thermometry

LIF

Laser-induced fluorescence

NTSC

National Television Systems Committee

POD

Proper orthogonal decomposition

RTD

Resistance temperature detector

TLC

Thermochromic liquid crystals

PAL

Phase altering line

SECAM

Séquentiel couleur à mémoire

NTSC

National Television Standards Committee

HSI

Hue, saturation, intensity

RGB

Red, green, blue color space

References

  1. Abu Talib AR, Neely AJ, Ireland PT, Mullender AJ (2004) A novel liquid crystal image processing technique using multiple gas temperature steps to determine heat transfer coefficient distribution and adiabatic wall temperature. ASME J Turbomach 126:587–596CrossRefGoogle Scholar
  2. Adams JE, Haas W, Wysocki J (1969) Optical properties of certain cholesteric liquid-crystal films. J Chem Phys 50(6):2458–2464CrossRefGoogle Scholar
  3. Adrian RJ (1983) Laser velocimetry. In: Goldstein RJ (ed) Fluid mechanics measurements. Hemisphere, Washington, pp 155–244Google Scholar
  4. Adrian RJ (1984) Scattering particle characteristics and their effect on pulsed laser measurements of fluid flow: speckle velocimetry vs particle image velocimetry. Appl Opt 23:1690–1691Google Scholar
  5. Adrian RJ (1988) Statistical properties of particle image velocimetry measurements in turbulent flow. In: Adrian RJ, Durao DFG, Durst F, Heitor MV, Maeda M, Whitelaw JH (eds) Laser anemometry in fluid mechanics. Springer, New York, pp 115–129Google Scholar
  6. Adrian RJ (1991) Particle imaging techniques for experimental fluid mechanics. Ann Rev Fluid Mech 23:261–304AGoogle Scholar
  7. Aeschliman DP, Croll RH, Kuntz DW (1995) Shear-stress-sensitive liquid crystals for hypersonic boundary-layer transition detection. J Spacecr Rockets 32:749–757CrossRefGoogle Scholar
  8. Ahn J, Jung IS, Lee JS (2003) Film cooling from two rows of holes with opposite orientation angles- injectant behavior and adiabatic film cooling effectiveness. Int J Heat Fluid Flow 24:91–99CrossRefGoogle Scholar
  9. Ahn J, Choi H, Lee JS (2005) Large eddy simulation of flow and heat transfer in a channel roughened by square or semicircle ribs. ASME J Turbomach 127:263–269CrossRefGoogle Scholar
  10. Ai D, Ding P-P, Chen P-H (2001) The selection criterion of injection temperature pair for transient liquid crystal thermography on film cooling measurements. Int J Heat Mass Transf 44:1389–1399MATHCrossRefGoogle Scholar
  11. Akino N, Kunugi T, Ichimiya K, Mitsushiro K, Ueda M (1986a) Improved liquid crystal thermometry excluding human color sensation, parts I and II, Concept and calibration. In: Kim JH, Moffat RJ (eds) Pressure and temperature measurements, vol 58. ASME HTD, Anaheim, pp 57–68Google Scholar
  12. Akino N, Kunugi T, Ichimiya K, Mitsushiro K, Ueda M (1986b) Improved liquid crystal thermometry excluding human color sensation, part II, applications to the determination of wall temperature distributions. In: Kim JH, Moffat RJ (eds) Pressure and temperature measurements, vol 58. ASME HTD, Anaheim, pp 63–68Google Scholar
  13. Akino N, Kunugi T, Ichimiya K, Mitsushiro K, Ueda M (1989) Improved liquid-crystal thermometry excluding human color sensation. Trans ASME J Heat Transf 111:558–565Google Scholar
  14. Akino N, Kunugi T, Ichimiya K, Ueda M, Kurosawa A (1987) Liquid crystal thermometry based on automatic color evaluation and applications to measure turbulent heat transfer. In: Hirata M, Kasagi N (eds) Second international symposium on transport phenomena in turbulent flows, Tokyo, Japan, pp 627–640Google Scholar
  15. Anderson MR, Baughn JW (2005a) Liquid-crystal thermometry: illumination spectral effects. Part 1—experiments. J Heat Transf 127:581–587CrossRefGoogle Scholar
  16. Anderson MR, Baughn JW (2005b) Liquid-crystal thermometry: illumination spectral effects. Part 2—theory. J Heat Transf 127:588–596CrossRefGoogle Scholar
  17. Ardasheva MM, Ryzhkova MV (1978) The use of liquid crystals in an aerodynamic heating test. Fluid Mech Sov Res 6:128–136Google Scholar
  18. Arjocu SC, Liburdy JA (2000) Identification of dominant heat transfer modes associated with the impingement of an elliptical jet array. ASME J Heat Transf 122:240–247CrossRefGoogle Scholar
  19. Ashforth-Frost S, Jambunathan K (1996a) Effect of nozzle geometry and semi-confinement on the potential core of a turbulent axisymmetric free jet. Int Comm Heat Mass Transf 23:155–162CrossRefGoogle Scholar
  20. Ashforth-Frost S, Jambunathan K (1996b) Numerical prediction of semi-confined jet impingement and comparison with experimental data. Int J Numer Methods Fluids 23:295–306CrossRefGoogle Scholar
  21. Ashforth-Frost S, Jambunathan K, Whitney CF, Ball SJ (1997) Heat transfer from a flat plate to a turbulent axisymmetric impinging jet. Proc Inst Mech Eng 211:167–172CrossRefGoogle Scholar
  22. Auton TR, Hunt JCE, Prud’homme M (1988) The force exerted on a body in inviscid unsteady non-uniform rotational flow. J Fluid Mech 197:241–257MATHMathSciNetCrossRefGoogle Scholar
  23. Azad GS, Han J-C, Boyle RJ (2000a) Heat transfer and flow on the squealer tip of a gas turbine blade. J Turbomach 122:725–732CrossRefGoogle Scholar
  24. Azad GS, Huang YH, Han JC (2000b) Impingement heat transfer on dimpled surfaces using a transient liquid crystal technique. J Thermophys Heat Transf 14:186–193CrossRefGoogle Scholar
  25. Babinsky H, Edwards JA (1996) Automatic liquid crystal thermography for transient heat transfer measurements in hypersonic flow. Exp Fluids 21(4):227–236CrossRefGoogle Scholar
  26. Barlow DN, Kim YW, Florschuetz LW (1997) Transient liquid crystal technique for convective heat transfer on rough surfaces. J Turbomach 119:14–22Google Scholar
  27. Baughn JW (1995) Liquid crystal methods for studying turbulent heat transfer. Int J Heat Fluid Flow 16:365–375CrossRefGoogle Scholar
  28. Baughn JW, Anderson MR, Mayhew JE, Wolf JD (1999) Hysteresis of thermochromic liquid crystal temperature measurement based on hue. Trans ASME J Heat Transf 121:1067–1072CrossRefGoogle Scholar
  29. Baughn JW, Ireland PT, Jones TV, Saniei N (1989) A comparison of the transient and heated-coating methods for the measurement of local heat transfer coefficients on a pin fin. ASME J Heat Transf 111:877–881CrossRefGoogle Scholar
  30. Behle M, Schulz K, Leiner W, Fiebig M (1996) Color-based image processing to measure local temperature distribution by wide-band liquid crystal thermography. Appl Sci Res 56:113–143CrossRefGoogle Scholar
  31. Berger-Schunn (1994) Practical Color Measurement: A primer for the beginner, a reminder for the expert. In: Goodman JW (ed) Wiley, New YorkGoogle Scholar
  32. Berkooz G, Elezgaray J, Holmes P, Lumley J, Poje AC (1994) The proper orthogonal decomposition, wavelets and modal approaches to the dynamics of coherent structures in turbulence. Appl Sci Res 53:321–338MATHCrossRefGoogle Scholar
  33. Berns RS (2000) Billmeyer and Saltzman’s principles of color technology. Wiley, New YorkGoogle Scholar
  34. Boree J (2003) Extended proper orthogonal decomposition: a tool to analyse correlated events in turbulent flows. Exp Fluids 35(2):188–192CrossRefGoogle Scholar
  35. Brown GL, Roshko A (1974) On density effects and large structure in turbulent mixing layers. J Fluid Mech 64:775–816CrossRefGoogle Scholar
  36. Bühler L, Erhard P, Günther G, Müller U, Zimmermann G (1987) Natural convection in vertical gaps heated at the lower side—an experimental an numerical study. In: Bau HM, Bertram LA, Lorpela SA (eds) Bifurcation phenomena in thermal processes and convections. ASME, HTD-vol 94/AMD-vol 89, pp 67–74Google Scholar
  37. Buttsworth DR, Elston SJ, Jones TV (1998) Direct full surface skin friction measurement using nematic liquid crystal techniques. J Turbomach 120:847–853CrossRefGoogle Scholar
  38. Buttsworth DR, Elston SJ, Jones TV (2000) Skin friction measurements on reflective surfaces using nematic liquid crystal. Exp Fluids 28(1):64–73CrossRefGoogle Scholar
  39. Camci C, Kim K (1992) A new hue capturing techniques for the quantitative interpretation of liquid crystal images used in convective heat transfer studies. ASME J Turbomach 114:765–775CrossRefGoogle Scholar
  40. Camci C, Kim K, Hippensteele SA (1992) A new hue capturing technique for the quantitative interpretation of liquid crystal images used in convective heat transfer studies. J Turbomach 114:765–775CrossRefGoogle Scholar
  41. Camci C, Kim K, Hippensteele SA, Poinsatte PE (1993) Evaluation of a hue capturing based transient liquid-crystal method for high resolution mapping of convective heat-transfer on curved surfaces. J Heat Transf 115:311–318CrossRefGoogle Scholar
  42. Cavallero D, Tanda G (2002) An experimental investigation of forced convection heat transfer in channels with rib turbulators by means of liquid crystal thermography. Exp Therm Fluid Sci 26:115–121CrossRefGoogle Scholar
  43. Chambers AC, Gillespie DRH, Ireland PT, Dailey GM (2003) A novel transient liquid crystal technique to determine heat transfer coefficient distributions and adiabatic wall temperature in a three-temperature problem. J Turbomach 125:538–546CrossRefGoogle Scholar
  44. Chan TL (2001) Evaluation of viewing-angle effect on determination of local heat transfer coefficients on a curved surface using transient and heat-coating liquid-crystal methods. Exp Fluids 31(4):447–456CrossRefGoogle Scholar
  45. Chan TL, Ashforth-Frost S, Jambunathan K (2001) Calibrating for viewing angle effect during heat transfer measurements on a curved surface. Int J Heat Mass Transf 44:2209–2223CrossRefGoogle Scholar
  46. Chaudhari AM, Woudenberg TM, Albin M, Goodson KE (1998) Transient liquid crystal thermography of microfabricated PCR vessel arrays. J Microelectromech Syst 7:345–355CrossRefGoogle Scholar
  47. Chen P-H, Ding P-P, Ai D (2001) An improved data reduction method for transient liquid crystal thermography on film cooling measurements. Int J Heat Mass Transf 44:1379–1387CrossRefGoogle Scholar
  48. Chyu MK, Ding H, Downs JP, Soechting FO (1998) Determination of local heat transfer coefficient based on bulk mean temperature using a transient liquid crystals technique. Exp Therm Fluid Sci 18:142–149CrossRefGoogle Scholar
  49. Chyu MK, Yu Y, Ding H (1999) Heat transfer enhancement in rectangular channels with concavities. J Enhanc Heat Trans 6:429–439Google Scholar
  50. Ciofalo M, Signorino M, Simiano M (2003) Tomographic particle-image velocimetry and thermometry in Rayleigh–Benard convection using suspended thermochromic liquid crystals and digital image processing. Exp Fluids 34(2):156–172Google Scholar
  51. Collings PJ (2002) Liquid crystals: nature’s delicate phase of matter. Princeton University Press, PrincetonGoogle Scholar
  52. Cooper TE, Field RJ, Meyer JF (1975) Liquid crystal thermography and its application to the study of convective heat transfer. ASME J Heat Transf 97:442–450Google Scholar
  53. Critoph RE, Holland MK, Fisher M (1999) Comparison of steady state and transient methods for measurement of local heat transfer in plate fin-tube heat exchangers using liquid crystal thermography with radiant heating. Int J Heat Mass Transf 42:1–12CrossRefGoogle Scholar
  54. Csendes A, Szekely V, Rencz M (1996) Thermal mapping with liquid crystal method. Microelectron Eng 31:281–290CrossRefGoogle Scholar
  55. Dabiri D (1992) The effect of forced boundary conditions on the flow field of a square convection cell. PhD thesis, University of California, San DiegoGoogle Scholar
  56. Dabiri D, Gharib M (1996) The effects of forced boundary conditions on flow within a cubic cavity using digital particle image thermometry and velocimetry (DPITV). Exp Therm Fluid Sci 13:349–363CrossRefGoogle Scholar
  57. Dabiri D, Gharib M (1991a) Digital particle image thermometry: the method and implementation. Exp Fluids 11(2–3):77–86Google Scholar
  58. Dabiri D, Gharib M (1991b) Digital particle image thermometry and its application to a heated vortex-ring. In: Applications of laser anemometry to fluid mechanics. Fifth international symposium on application of laser techniques to fluid mechanics, Lisbon, Portugal, July 9–12, pp 81–101Google Scholar
  59. Dabiri D, Gharib M (1995) Digital particle image thermometry and velocimetry. In: Flow visualization VII, proceedings of the seventh international symposium on flow visualization, 11–14 September, pp 558–563Google Scholar
  60. Dano BPE, Liburdy JA, Kanokjaruvijit K (2005) Flow characteristics and heat transfer performances of a semiconfined impinging array of jets-effect of nozzle geometry. Int J Heat Mass Transf 48:691–701CrossRefGoogle Scholar
  61. Das MK, Tariq A, Panigrahi PK, Muralidhar K (2005) Estimation of convective heat transfer coefficient from transient liquid crystal data using an inverse technique. Inverse Probl Sci Eng 13:133–155CrossRefMATHGoogle Scholar
  62. de Vries (1951) Rotatory power and other optical properties of certain liquid crystals. Acta Crystallogr 4:219–226Google Scholar
  63. Delville J, Bonnet JP (2001) Review of coherent structures in turbulent free shear flows and their possible influence on computational methods. Flow Turbul Combust 66:333–353MATHCrossRefGoogle Scholar
  64. Demus D, Chemie S (1990) Types and classification of liquid crystals. In: Bahadur B (ed) Liquid crystals, applications and uses, vol 1. World Scientific, New Jersey, pp 1–36Google Scholar
  65. Drost U, Bolcs A (1999) Investigation of detailed film cooling effectiveness and heat transfer distributions on a gas turbine airfoil. J Turbomach 121:233–242Google Scholar
  66. Dukle NM, Hollingsworth DK (1996a) Liquid crystal images of the transition from jet impingement convection to nucleate boiling part I: Monotonic distribution of the convection coefficient. Exp Therm Fluid Sci 12:274–287CrossRefGoogle Scholar
  67. Dukle NM, Hollingsworth DK (1996b) Liquid crystal images of the transition from jet impingement convection to nucleate boiling part II: nonmonotonic distribution of the convection coefficient. Exp Therm Fluid Sci 12:288–297CrossRefGoogle Scholar
  68. Du H, Ekkad S, Han JC (1997) Effect of unsteady wake with trailing edge coolant ejection on detailed heat transfer coefficient distributions for a gas turbine blade. J Heat Transf 119:242–248CrossRefGoogle Scholar
  69. Du H, Ekkad S, Han JC (1999) Effect of unsteady wake with trailing edge coolant ejection on film cooling performance for a gas turbine blade. J Turbomach 121:448–455Google Scholar
  70. Ekkad SV, Han J-C (1996) Heat transfer inside and downstream of cavities using transient liquid crystal method. J Thermophys Heat Transf 10:511–516CrossRefGoogle Scholar
  71. Ekkad SV, Han J-C (1999) Heat transfer distributions on a cylinder with simulated thermal barrier coating spallation. J Thermophys Heat Transf 13:76–81CrossRefGoogle Scholar
  72. Ekkad SV, Han J-C (2000a) A transient liquid crystal thermography technique for gas turbine heat transfer measurements. Meas Sci Technol 11:957–968CrossRefGoogle Scholar
  73. Ekkad SV, Han J-C (2000b) Film cooling measurements on cylindrical models with simulated thermal barrier coating spallation. J Thermophys Heat Transf 14:194–200CrossRefGoogle Scholar
  74. Ekkad SV, Han JC, Du H (1998) Detailed film cooling measurements on a cylindrical leading edge model: Effect of free-stream turbulence and coolant density. J Turbomach 120:799–807CrossRefGoogle Scholar
  75. Ekkad SV, Huang YZ, Han JC (1999) Impingement heat transfer on a target plate with film cooling holes. Thermophys Heat Transf 13:522–528CrossRefGoogle Scholar
  76. Ekkad SV, Pamela G, Acharya S (2000) Influence of crossflow-induced swirl and impingement on heat transfer in an internal coolant passage of a turbine airfoil. J Heat Transf 122:587–597CrossRefGoogle Scholar
  77. Ekkad SV, Zapata D, Han C (1997) Film effectiveness over a flat surface with air and CO2 injection through compound angle holes using a transient liquid crystal image method. J Turbomach 199:587–593Google Scholar
  78. El-Gabry LA, Kaminski DA (2005) Experimental investigation of local heat transfer distribution on smooth and roughened surfaces under an array of angled impinging jets. ASME J Turbomach 127:532–544CrossRefGoogle Scholar
  79. Elser W, Ennulat RD (1976) Selective reflection of cholesteric liquid crystals. In: Brown G (ed) Advances in liquid crystals, vol 2. Academic Press, New York, pp 73–172Google Scholar
  80. Engels G, Peck RE, Kim Y (2001) Investigation of a quasi-steady liquid crystal technique for film cooling heat transfer measurements. Exp Heat Transf 14:181–198CrossRefGoogle Scholar
  81. Facchini B, Innocenti L, Surace M (2006) Design criteria for ribbed channels—experimental investigation and theoretical analysis. Int J Heat Mass Transf 40:3130–3141CrossRefGoogle Scholar
  82. Facchini B, Surace M (2006) Impingement cooling for modern combustors: experimental analysis of heat transfer and effectiveness. Exp Fluids 40(4):601–611CrossRefGoogle Scholar
  83. Farina DJ, Hacker JM, Moffat RJ, Eaton JK (1994) Illuminant invariant calibration of thermochromic liquid crystal. Exp Therm Fluid Sci 9:1–12CrossRefGoogle Scholar
  84. Fergason JL (1964) Liquid Crystals. Scientific American 211:77–85Google Scholar
  85. Fergason JL (1966) Cholesteric structure—I optical properties. Molec Cryst 1:293–307CrossRefGoogle Scholar
  86. Fergason JL (1968) Liquid crystals in nondestructive testing. Appl Opt 7:1729–1737CrossRefGoogle Scholar
  87. Foley JD, van Dam A, Feiner SK, Hughes JF (1996) Computer graphics: principles and practice. In: Gordon PS (ed) Addison-Wesley, New YorkGoogle Scholar
  88. Freidel G (1922) Les etats mesomorphes de la matiere. Annales de Physique 18:273–474Google Scholar
  89. Frey H (1988) Digitale bildverarbeitung in farbräumen. PhD thesis, Technical University of Munich, Munich, GermanyGoogle Scholar
  90. Fujisawa N, Aoyama A, Kosaka S (2003) Measurement of shear-stress distribution over a surface by liquid-crystal coating. Meas Sci Technol 14:1655–1661CrossRefGoogle Scholar
  91. Fujisawa N, Adrian RJ (1999) Three-dimensional temperature measurement in turbulent thermal convection by extended range scanning liquid crystal thermometry. J Vis 1:355–364Google Scholar
  92. Fujisawa N, Funatani S (2000) Simultaneous measurement of temperature and velocity in a turbulent thermal convection by the extended range scanning liquid crystal visualization technique. Exp Fluids 29:s158–s165CrossRefGoogle Scholar
  93. Fujisawa N, Hashizume Y (2001) An uncertainty analysis of temperature and velocity measured by a liquid crystal visualization technique. Meas Sci Technol 12:1235–1242Google Scholar
  94. Fujisawa N, Nakajima T, Katoh N, Hashizume Y (2004) An uncertainty analysis of temperature and velocity measured by stereo liquid-crystal thermometry and velocimetry. Meas Sci Technol 15:799–806CrossRefGoogle Scholar
  95. Fujisawa N, Funatani S, Katoh N (2005) Scanning liquid-crystal thermometry and stereo velocimetry for simultaneous three-dimensional measurement of temperature and velocity field in a turbulent Rayleigh–Benard convection. Exp Fluids 38(3):291–303CrossRefGoogle Scholar
  96. Fujisawa N, Watanabe M, Hashizume Y (2008) Visualization of turbulence structure in unsteady non-penetrative thermal convection using liquid crystal thermometry and stereo velocimetry. J Vis 11:173–180Google Scholar
  97. Funatani S, Fujisawa N (2002) Simultaneous measurement of temperature and three velocity components in planar cross section by liquid-crystal thermometry combined with stereoscopic particle image velocimetry. Meas Sci Technol 13:1197–1205CrossRefGoogle Scholar
  98. Funatani S, Fujisawa N, Matsuura T (2000) Multi-point calibration technique of liquid crystal thermometry and its application to three-dimensional temperature measurement of thermal convection. J Flow Vis Image Process 7:353–366Google Scholar
  99. Gao X, Sundén B (2001) Heat transfer and pressure drop measurements in rib-roughened rectangular ducts. Exp Therm Fluid Sci 24:25–34CrossRefGoogle Scholar
  100. Geers LFG, Hanjalic K, Tummers MJ (2006) Wall imprint of turbulent structures and heat transfer in multiple impinging jet arrays. J Fluid Mech 546:255–284MATHCrossRefGoogle Scholar
  101. Gennes PG, Prost J (1993) The physics of liquid crystals. Oxford University Press, New YorkGoogle Scholar
  102. Gharib M, Dabiri D (2000) Digital particle image velocimetry. In: Smits AJ, Lim TT (eds) Flow visualization, techniques and examples. Imperial College Press, SingaporeGoogle Scholar
  103. Gleeson HF, Coles HJ (1989) Optical properties of chiral nematic liquid crystals. Mol Cryst Liquid Cryst 170:9–34CrossRefGoogle Scholar
  104. Grant I (1994) Selected papers on particle image velocimetry In: Grant I (ed) SPIE milestone series, vol MS 99. SPIE Optical Engineering Press, BellinghamGoogle Scholar
  105. Grassi W, Testi D, Della Vista D, Torelli G (2007) Calibration of a sheet of thermosensitive liquid crystals viewed orthogonally. Measurements 40:898–903Google Scholar
  106. Grewal GS, Bharara M, Cobb JE, Dubey VN, Claremont DJ (2006) A novel approach to thermochromic liquid crystal calibration using neural networks. Meas Sci Technol 17:1918–1924CrossRefGoogle Scholar
  107. Guild J (1931) The colorimetric properties of the spectrum. Philos Trans R Soc Lond Ser A 230:149–187CrossRefGoogle Scholar
  108. Günther A, Rudolf von Rohr Ph (2002a) Influence of the optical configuration on temperature measurements with fluid-dispersed TLCs. Exp Fluids 33(5):920–930Google Scholar
  109. Günther A, Rudolf von Rohr Ph (2002b) Structure of the temperature field in a flow over heated waves. Exp Fluids 33(6):920–930Google Scholar
  110. Hacker JM, Eaton JK (1996) Measurements of heat transfer in a separated and reattaching flow with spatially varying thermal boundary conditions. Int J Heat Fluid Flow 18:131–141CrossRefGoogle Scholar
  111. Hay JL, Hollingsworth DK (1996) A comparison of trichromic systems for use in the calibration of polymer-dispersed thermochromic liquid crystals. Exp Therm Fluid Sci 12:1–12CrossRefGoogle Scholar
  112. Hay JL, Hollingsworth DK (1998) Calibration of micro-encapsulated liquid crystals using hue angle and a dimensionless temperature. Exp Therm Fluid Sci 18:251–257CrossRefGoogle Scholar
  113. Hiller WJ, Kowalewski TA (1986) Simultaneous measurement of temperature and velocity fields in thermal convective flows. In: Claude Veret (ed) Flow visualization IV, proceedings of the 4th international symposium on flow visualization, 26–29 August, Paris, France. Hemisphere, New York, pp 617–622Google Scholar
  114. Hiller WJ, Koch ST, Kowalewski TA (1989a) Three-dimensional structures in laminar natural convection in a cubic enclosure. Exp Therm Fluid Sci 2:34–44CrossRefGoogle Scholar
  115. Hiller WJ, Koch ST, Kowalewski TA, De Vahl Davis G, Behnia M (1989b) Experimental and numerical investigation of natural convection in a cube with two heated side walls. In: Moffatt HK, Tsinober A (eds) Topological fluid mechanics, proceedings of the IUTAM symposium, 13–18 August. Cambridge University Press, Cambridge, pp 717–727Google Scholar
  116. Hiller WJ, Koch ST, Kowalewski TA, Range K (1991) Visualization of 3-D convection—comparison with numerical results. In: Esp. da Revista Brasileira de Ciencias Mecanicas (ed) 11th ABCM mechanical engineering conference, 11–13 December, Sao Paulo, Brazil, vol 2, pp 21–24Google Scholar
  117. Hiller WJ, Koch ST, Kowalewski TA, Stella F (1993) Onset of natural convection in a cube. Int J Heat Mass Transf 36:3251–3263CrossRefGoogle Scholar
  118. Hjelmfelt AT, Mockros LF (1966) Motion of discrete particles in a turbulent fluid. Appl Sci Res 16:149–161CrossRefGoogle Scholar
  119. Hoffs A, Bolcs A, Harasgama SP (1997) Transient heat transfer experiments in a linear cascade via an insertion mechanism using the liquid crystal technique. J Turbomach 199:9–13Google Scholar
  120. Hollingsworth DK, Boehman AL, Smith EG, Moffat RJ (1989) Measurement of temperature and heat transfer coefficient distributions in a complex flow using liquid crystal thermography and true-color image processing. In: ASME collected papers in heat transfer, HTD-vol 123, Winter annual meeting of ASME, San Francisco, 10–15 December. ASME, New York, pp 35–42Google Scholar
  121. Holmes BJ, Obara CJ (1987) Advances in flow visualization using liquid crystal coatings. SAE technical paper 871017Google Scholar
  122. Hu H, Koochesfahani MM (2006) Molecular tagging velocimetry and thermometry and its application to the wake of a heated circular cylinder. Meas Sci Technol 17:1269–1281CrossRefGoogle Scholar
  123. Hu SH, Richards CD, Richards RF (1994) Thermography of atomized fropelts in flight using thermochromic liquid crystals. In: 8th Annual ICASS conference of liquid atomization and spray systems, Belleve WAGoogle Scholar
  124. Huang YZ, Ekkad SV, Han JC (1998) Detailed heat transfer distributions under an array of orthogonal impinging jets. J Thermophys Heat Transf 12:73–79CrossRefGoogle Scholar
  125. Hwang J-J, Cheng C-S (1999) Augmented heat transfer in a triangular duct by using multiple swirling jets. J Heat Trans 121:683–690CrossRefGoogle Scholar
  126. Hwang J-J, Chang B-Y (2000) Effect of outflow orientation on heat transfer and pressure drop in a triangular duct with an array of tangential jets. J Heat Trans 122:669–678CrossRefGoogle Scholar
  127. Hwang J-J, Cheng C-S (2001) Impingement cooling in triangular ducts using an array of side-entry wall jets. Int Heat Mass Transf 44:1053–1063CrossRefGoogle Scholar
  128. Hwang J-J, Lui C-C (1999) Detailed heat transfer characteristic comparison in straight and 90-deg turned trapezoidal ducts with pin-fin arrays. Int J Heat Mass Transf 42:4005–4016MATHCrossRefGoogle Scholar
  129. Iles A, Fortt R, de Mello AJ (2005) Thermal optimisation of the Reimer–Tiemann reaction using thermochromic liquid crystals on a microfluidic reactor. Lab Chip 5:540–544CrossRefGoogle Scholar
  130. Ireland PT, Jones TV (1987) The response time of a surface thermometer employing encapsulated thermochromic liquid crystals. J Phys E Sci Instrum 20:1195–1199CrossRefGoogle Scholar
  131. Ireland PT, Jones TV (2000) Liquid crystal measurements of heat transfer and surface shear stress. Meas Sci Tech 11:969–986CrossRefGoogle Scholar
  132. Ireland PT, Neely AJ, Gillespie DRH, Robertson AJ (1999) Turbulent heat transfer measurements using liquid crystals. Int J Heat Fluid Flow 20:355–367CrossRefGoogle Scholar
  133. Jain AK (1989) Fundamentals of digital image processing. In: Kailath T (ed) Prentice-Hall, New JerseyGoogle Scholar
  134. Javitt NB (2002) Cholesterol, hydroxycholesterols, and bile acids. Biochem Biophys Res Commun 292(5):1147–1153CrossRefGoogle Scholar
  135. Jeng T-M, Wang M-P, Hwang G-J, Hung Y-H (2004) A new semi-empirical model for predicting heat transfer characteristics in porous channels. Exp Therm Fluid Sci 29:9–21CrossRefGoogle Scholar
  136. Jeschke P, Biertümpfel R, Beer H (2000) Liquid-crystal thermography for heat-transfer measurements in the presence of longitudinal vortices in a natural convection flow. Meas Sci Technol 11:447–453CrossRefGoogle Scholar
  137. Jung IS, Lee JS (2000) Effects of orientation angles on film cooling over a flat plate—boundary layer temperature distributions and adiabatic film cooling effectiveness. ASME J Turbomach 122:153–160CrossRefGoogle Scholar
  138. Kahn FJ (1982) The molecular physics of liquid-crystal devices. Phys Today 35(5):66–74CrossRefGoogle Scholar
  139. Kaiser E (2001) Measurement and visualization of impingement cooling in narrow channels. Exp Fluids 30(6):603–612Google Scholar
  140. Kasagi N, Hirata M, Kumada M (1981) Studies of full-converge film cooling: part 1, cooling effectiveness of thermally conductive wall. ASME paper no. 81-GT-37Google Scholar
  141. Kassab AJ, Divo E, Kapat JS (2001) Multi-dimensional heat flux reconstruction using narrow-band thermochromic liquid crystal thermography. Inverse Probl Eng 9:537–559CrossRefGoogle Scholar
  142. Kawamoto H (2002) The history of liquid-crystal displays. Proc IEEE 90(4):460–500CrossRefGoogle Scholar
  143. Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215CrossRefGoogle Scholar
  144. Kenning BDR, Yan YY (1996) Pool boiling heat transfer on a thin plate: features revealed by liquid crystal thermography. Int J Heat Mass Transf 39:3117–3137CrossRefGoogle Scholar
  145. Kenning DBR, Kono T, Wienecke M (2001) Investigation of boiling heat transfer by liquid crystal thermography. Exp Therm Fluid Sci 25:219–229CrossRefGoogle Scholar
  146. Keyes PH, Weston HT, Daniels WB (1973) Tricritical behavior in a liquid-crystal system. Phys Rev Lett 31:628–630CrossRefGoogle Scholar
  147. Kim K, Camci C (1995a) Fluid-dynamic and convective heat-transfer in impinging jets through implementation of a high-resolution liquid-crystal technique. 1 Flow and heat-transfer experiments. Int J Turbo Jet Eng 12(1):1–12Google Scholar
  148. Kim K, Camci C (1995b) Fluid-dynamic and convective heat-transfer in impinging jets through implementation of a high-resolution liquid-crystal technique. 2. Navier-stokes computation of impulsively starting heat-transfer experiments. Int J Turbo Jet Eng 12(1):13–19Google Scholar
  149. Kim T, Hodson HP, Lu TJ (2005) Contribution of vortex structures and flow separation to local and overall pressure and heat transfer characteristics in an ultralightweight lattice material. Int J Heat Mass Transf 48:4243–4264CrossRefGoogle Scholar
  150. Kimura I, Hyodo T, Ozawa M (1998) Temperature and velocity measurement of a 3D thermal flow field using thermo-sensitive liquid crystals. J Vis 1:145–152Google Scholar
  151. Kimura I, Takamori T, Ozawa M, Takenaka N, Sakaguchi T (1989a) Simultaneous measurement of flow and temperature fields based on color image information. In: Flow visualization V, proceedings of the fifth international symposium on flow visualization, August 21–25, Prague, Czechoslovakia, pp 29–34Google Scholar
  152. Kimura I, Takamori T, Ozawa M, Takenaka N, Manabe Y (1989b) Quantitative thermal flow visualization using color image processing (application to a natural convection visualized by liquid crystals). In: Khalighi B, Brown MJ, Freitas CJ (eds) Flow visualization, vol 85. ASME-FED, pp 261–269Google Scholar
  153. Kingsley-Rowe JR, Lock GD, Owen JM (2005) Transient heat transfer measurements using thermochromic liquid crystal—lateral-conduction error. Int J Heat Fluid Flow 26:256–263CrossRefGoogle Scholar
  154. Kitamura K, Kimura F (1995) Heat transfer and fluid flow of natural convection adjacent to upward-facing horizontal plates. Int J Heat Mass Transf 38:3149–3159CrossRefGoogle Scholar
  155. Klein EJ (1968a) Liquid crystals in aerodynamic testing. Aeronaut Astronaut 6(7):70–73Google Scholar
  156. Klein EJ (1968b) Application of liquid crystals to boundary-layer flow visualization. AIAA paper, 68-376Google Scholar
  157. Klein EJ, Margozzi AP (1970) Apparatus for the calibration of shear-sensitive liquid crystals. Rev Sci Instrum 41:238–239CrossRefGoogle Scholar
  158. Kobayashi T, Saga T, Foeg-Hee D (1998) Time response characteristics of microcapsulated liquid-crystal particles. Heat Transf Jpn Res 27:298–390Google Scholar
  159. Kodzwa PM, Eaton JK (2007) Angular effects on thermochromic liquid crystal thermography. Exp Fluids 43(6):929–937CrossRefGoogle Scholar
  160. Kodzwa PM, Elkins CJ, Mukerji D, Eaton J (2007) Thermochromic liquid crystal temperature measurements through a borescope imaging system. Exp Fluids 43(4):475–486CrossRefGoogle Scholar
  161. Kowalewski TA (2002) Particle image velocimetry and thermometry for two-phase flow problems. Ann NY Acad Sci 972:213–222Google Scholar
  162. Kowalewski TA (1999) Particle image velocimetry and thermometry using liquid crystals. In: 8me colloque nationale de visualisation et de traitment d’images en mecanique des fluides, 1–4 June, ENSICA, Toulouse, France, pp 33–48Google Scholar
  163. Kowalewski TA (2001) Particle image velocimetry and thermometry using liquid crystals tracers. In: Kompemhans J (ed) PIV’01 4th international symposium on particle image velocimetry, DLR, Mitteilung, Göttingen, pp 1134.1–1134.10Google Scholar
  164. Kowalewski TA, Rebow M (1999) Freezing of water in a differentially heated cubic cavity. Int J Comp Fluid Dyn 11:193–210MATHCrossRefGoogle Scholar
  165. Kowalewski TA, Ligrani P, Dreizler A, Schulz C, Fey U, Egami Y (2007) Temperature and heat flux. In: Tropea C, Yarin AL, Foss JF (eds) Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 487–561Google Scholar
  166. Kukreja RT, Lau SC (1998) Distributions of local heat transfer coefficient on surfaces with solid and perforated ribs. Enhanc Heat Transf 5:9–21Google Scholar
  167. Lakshminarasimhan MS, Lu Q, Chin Y, Hollingsworth DK, Witte LC (2005) Fully developed nucleate boiling in narrow vertical channels. J Heat Transf 127:941–944CrossRefGoogle Scholar
  168. Lee J, Lee S-J (1999) Stagnation region heat transfer of a turbulent axisymmetric jet impingement. Exp Heat Transf 12:137–156CrossRefGoogle Scholar
  169. Lee J, Lee S-J (2000) The effect of nozzle aspect ratio on stagnation region heat transfer characteristics of elliptic impinging jet. Int J Heat Mass Transf 43:555–575MATHCrossRefGoogle Scholar
  170. Lee DH, Chung JH, Won SY, Kim YT, Boo KS (2000) A new liquid crystal color calibration technique using neural networks and median filtering. KSME Int 14(1):113–120Google Scholar
  171. Lee JS, Jung HG, Kang SB (2002) Effect of embedded vortices on film cooling performance on a flat plate. Exp Therm Fluid Sci 26:197–204CrossRefGoogle Scholar
  172. Lehmann O (1889) Über fliessende krystalle. Z Phys Chem 4:462–472Google Scholar
  173. Lemburg R (1971) Liquid crystal for the visualization of unsteady boundary layers. In: Third Canadian congress of applied mechanics, Calgary, pp 525–526Google Scholar
  174. Li H, Xing C, Braun MJ (2007) Natural convection in a bottom-heated top-cooled cubic cavity with a baffle at the median height: experiment and model validation. Exp Fluids 43(9):895–905Google Scholar
  175. Lighthill J (1978) Waves in fluids. Cambridge University Press, CambridgeMATHGoogle Scholar
  176. Ling JPC, Ireland PT, Turner L (2004) A technique for processing transient heat transfer, liquid crystal experiments in the presence of lateral conduction. J Turbomach 126:247–258CrossRefGoogle Scholar
  177. Liou T-M, Chen C-C, Tsai T-W (2000a) Heat transfer and fluid flow in a square duct with 12 different shaped vortex generators. ASME J Heat Transf 122:327–335CrossRefGoogle Scholar
  178. Liou T-M, Chen C-C, Tzeng Y-Y, Tsai T-W (2000b) Nonintrusive measurements of near-wall fluid flow and surface heat transfer in a serpentine passage. Int J Heat Mass Transf 43:3233–3244CrossRefGoogle Scholar
  179. Liou T-M, Chen C-C, Chen M-Y (2001) TLCT and LDV measurements of heat transfer and fluid flow in a rotating sharp turning duct. Int J Heat Mass Transf 44:1777–1787CrossRefGoogle Scholar
  180. Liou T-M, Chen M-Y, Wang Y-M (2003) Heat transfer, fluid flow, and pressure measurements inside a rotating two-pass duct with detached 90-deg ribs. ASME J Turbomach 125:565–574CrossRefGoogle Scholar
  181. Litster JD, Birgeneau RJ (1982) Phases and phase transition. Phys Today 35(5):26–33CrossRefGoogle Scholar
  182. Lock GD, Wilson M, Owen JM (2005a) Influence of fluid dynamics on heat transfer in a preswirl rotating-disk system. ASME J Eng Gas Turbine Power 127:791–797CrossRefGoogle Scholar
  183. Lock GD, Yan Y, Newton PJ, Wilson M, Owen JM (2005b) Heat transfer measurements using liquid crystals in a preswirl rotating-disk system. ASME J Eng Gas Turbine Power 127:375–382CrossRefGoogle Scholar
  184. Loebisch L (1872) Berichte der Deutschen Chemischen Gesellschaft 5:510–514Google Scholar
  185. Lourenco LM, Krothopalli A, Smith CA (1989) Particle image velocimetry. In: Gad-El-Hak M (ed) Advances in fluid mechanics measurements. Springer, Berlin, pp 128–199Google Scholar
  186. Lumley JL (1970) Stochastic tools in turbulence. Academic Press, New YorkMATHGoogle Scholar
  187. Lutjen PM, Mishra D, Prasad V (2001) Three-dimensional visualization and measurement of temperature field using liquid crystal scanning thermography. J Heat Transf 123:1006–1014CrossRefGoogle Scholar
  188. Ma X, Karniadakis GE, Park H, Gharib M (2002) DPIV/T-driven convective heat transfer simulation. Int J Heat Mass Transf 45:3517–3527MATHCrossRefGoogle Scholar
  189. Ma X, Karniadakis GE, Park H, Gharib M (2003) DPIV-driven flow simulation: a new computational paradigm. Proc R Soc Lond A 459:547–565MATHMathSciNetGoogle Scholar
  190. Maier A, Sheldrae TH, Wilcock D (2000a) Geometric parameters influencing flow in an axisymmetric IC engine inlet port assembly: part I—valve flow characteristics. J Fluid Eng 122:650–657CrossRefGoogle Scholar
  191. Maier A, Sheldrae TH, Wilcock D (2000b) Geometric parameters influencing flow in an axisymmetric IC engine inlet port assembly: Part II—parametric variation of valve geometry. J Fluid Eng 122:658–665CrossRefGoogle Scholar
  192. Makow DM (1980) Peak reflectance ad color gamut of superimposed left- and right-handed cholesteric liquid crystals. Appl Opt 19:1274–1277CrossRefGoogle Scholar
  193. Makow D (1991) Liquid crystals in decorative and visual arts. In: Bahadur B (ed) Liquid crystals, applications and uses, vol 2. World Scientific, New Jersey, pp 121–156Google Scholar
  194. Makow DM, Sanders CL (1978) Additive colour properties and colour gamut of cholesteric liquid crystals. Nature 276(5683):48–50CrossRefGoogle Scholar
  195. Martinez-Botas RF, Lock GD, Jones TV (1995) Heat-transfer measurements in an annular cascade of transonic gas-turbine blades using the transient liquid-crystal technique. J Turbomach 117:425–431Google Scholar
  196. Mathieu J (1911) J Bull Soc Trans Min 34:13Google Scholar
  197. Matsuda H, Ikeda K, Nakata Y, Otomo F, Takeo S, Fukuyama Y (2000) A new thermochromic liquid crystal temperature identification technique using color space interpolations and its application to film cooling effectiveness measurements. J Flow Vis Image Process 7:103–121Google Scholar
  198. Maxey MR (1987) The motion of a small rigid sphere in a non-uniform flow. Phys Fluids 30:1579–1582Google Scholar
  199. Maxey MR, Riley JJ (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26:863–889CrossRefGoogle Scholar
  200. Maxwell JC (1855) Experiments on colour, perceived by the eye, with remarks on colour-blindness. T Roy Soc Edin 24(2):275–298MathSciNetGoogle Scholar
  201. Maxwell JC (1965) Scientific papers of James Clerk Maxwell. In: Nevern WD (ed) The Scientific papers of James Clerk Maxwell, vol 1&2. Dover, New YorkGoogle Scholar
  202. Mayhew JE, Baughn JW, Byerley AR (2003) The effect of freestream turbulence on film cooling adiabatic effectiveness. Int J Heat Fluid Flow 24:669–679CrossRefGoogle Scholar
  203. McDonnell DG (1987) Thermochromic cholesteric liquid crystals. In: Gray GW (ed) Thermotropic liquid crystals, vol 22. Wiley, London, pp 120–144Google Scholar
  204. Mckeon BJ, Comte-Bellot G, Foss JF, Westerweeel J, Scarano F, Tropea C, Meyers JF, Lee JW, Cavone AA, Schodl R, Koochesfahani MM, Nocera DG, Andreopoulos Y, Dahm WJA, Mullin JA, Wallace JM, Vukoslavcevic PV, Morris SC, Pardyjak ER, Cuerva A (2007) Velocity, vorticity, and Mach number. In: Tropea C, Yarin AL, Foss JF (eds) Springer handbook of experimental fluid mechanics, 1st edn. Springer, Berlin, pp 215–471Google Scholar
  205. Mei R (1996) Velocity fidelity of flow tracer particles. Exp Fluids 22:1–13CrossRefGoogle Scholar
  206. Meinders ER, Van Der Meer TH, Hanjalic K (1998) Local convective heat transfer from an array of wall-mounted cubes. Int J Heat Mass Transf 41:335–346CrossRefGoogle Scholar
  207. Melling A (1997) Tracer particles and seeding for particle image velocimetry. Meas Sci Technol 8(12):1406–1416CrossRefGoogle Scholar
  208. Metzger DE, Bunker RS, Bosch G (1991) Transient liquid-crystal measurement of local heat-transfer on a rotating disk with jet impingement. J Turbomach 113:52–59CrossRefGoogle Scholar
  209. Mikhailov MD (2003) Evaluating convective heat transfer coefficients from a given set of data by using mathematica. Commun Numer Methods Eng 19:441–443MATHCrossRefGoogle Scholar
  210. Mishra D, Lutjen PM, Chen QS, Prasad V (2000) Tomographic reconstruction of three-dimensional temperature field using liquid crystal scanning thermography. Exp Heat Transf 13(4):235–258CrossRefGoogle Scholar
  211. Mitchell BS (2004) An introduction to materials engineering and science for chemical and materials engineers. Wiley, New JerseyGoogle Scholar
  212. Mochizuki T, Nozaki T, Mori YH, Kaji N (1999) Heat transfer to liquid drops passing through an immiscible liquid medium between tilted parallel-plate electrodes. Int J Heat Mass Transf 42:311–3129CrossRefGoogle Scholar
  213. Moffat RJ (1990) Some experimental methods for heat transfer studies. Exp Therm Fluid Sci 3:14–32CrossRefGoogle Scholar
  214. Moon HK, O’Connell T, Sharma R (2003) Heat transfer enhancement using a convex-patterned surface. ASME J Turbomach 125:274–280CrossRefGoogle Scholar
  215. Muwanga R, Hassan I (2006a) Local heat transfer measurements in microchannels using liquid crystal thermography: methodology development and validation. ASME J Heat Transf 128:617–626CrossRefGoogle Scholar
  216. Muwanga R, Hassan I (2006b) Local heat transfer measurements on a curved microsurface using liquid crystal thermography. J Thermophys Heat Transf 20:884–894CrossRefGoogle Scholar
  217. Muwanga R, Hassan I (2007) A flow boiling heat transfer investigation of FC-72 in a microtube using liquid crystal thermography. J Heat Transf 129:977–987CrossRefGoogle Scholar
  218. Nakano T, Fujisawa N (2006) Wind tunnel testing of shear-stress measurement by liquid-crystal coating. J Vis 9:135–136Google Scholar
  219. Neely AJ, Ireland PT, Harper LR (1997) Extended surface convective cooling studies of engine components using the transient liquid crystal technique. Proc Inst Mech Eng 211:273–287Google Scholar
  220. Newton PJ, Lock GD, Krishnababu SK, Hodson HP, Dawes WN, Hannis J, Whitney C (2006) Heat transfer and aerodynamics of turbine blade tips in a linear cascade. ASME J Turbomach 128:300–309CrossRefGoogle Scholar
  221. Newton PJ, Yan Y, Stevens NE, Evatt ST, Lock GD, Owen JM (2003a) Transient heat transfer measurements using thermochromic liquid crystal. Part 1—an improved technique. Int J Heat Fluid Flow 24(1):14–22CrossRefGoogle Scholar
  222. Newton PJ, Yan Y, Stevens NE, Evatt ST, Lock GD, Owen JM (2003b) Transient heat transfer measurements using thermochromic liquid crystal. Part 2—experimental uncertainties. Int J Heat Fluid Flow 24(1):23–28CrossRefGoogle Scholar
  223. Noh J, Sung SW, Jeon MK, Kim SH, Lee LP, Woo SI (2005) In situ thermal diagnostics of the micro-PCR system using liquid crystals. Sens Actuators 122:196–202CrossRefGoogle Scholar
  224. Nozaki T, Mochizuki T, Kaji N, Mory YH (1995) Application of liquid-crystal thermometry to drop temperature measurements. Exp Fluids 18:137–144CrossRefGoogle Scholar
  225. O’Brien S, Zhong S (2001) Visualisation of flow separation with shear-sensitive liquid crystals. Aeronaut J 105:597–602Google Scholar
  226. Ochoa AD, Baughn JW, Byerley AR (2005) A new technique for dynamic heat transfer measurements and flow visualization using liquid crystal thermography. Int J Heat Fluid Flow 26:264–275CrossRefGoogle Scholar
  227. Ogden TR, Hendricks EW (1984) Liquid crystal thermography in water tunnels. Exp Fluids 2:65–66CrossRefGoogle Scholar
  228. Onbasioglu & Onbasioglu (2003) On enhancement of heat transfer with ribs. Appl Therm Eng 24:43–57Google Scholar
  229. Oseen CW (1933) The theory of liquid crystals. Trans Faraday Soc 29:883–900CrossRefGoogle Scholar
  230. Owen JM, Newton PJ, Lock GD (2003) Transient heat transfer measurements using thermochromic liquid crystal. Part 1: an improved technique. Int J Heat Fluid Flow 24(1):14–22CrossRefGoogle Scholar
  231. Ozawa M, Mϋller U, Kimura I, Takamori T (1992) Flow and temperature measurement of natural convection in a Hele-Shaw cell using a thermo-sensitive liquid-crystal tracer. Exp Fluids 12:213–222CrossRefGoogle Scholar
  232. Park HG (1998) A study of heat transport processes in the wake of a stationary and oscillating circular cylinder using digital particle image velocimetry/thermometry. PhD thesis, California Institute of Technology, Pasadena, CA, USAGoogle Scholar
  233. Park HG, Gharib M (2001) Experimental study of heat convection from stationary and oscillating circular cylinder in cross flow. J Heat Transf 123:51–62CrossRefGoogle Scholar
  234. Park HG, Dabiri D, Gharib M (2001) Digital particle image velocimetry/thermometry and application to the wake of a heated circular cylinder. Exp Fluids 30:327–338CrossRefGoogle Scholar
  235. Parsley M (1991) The Hallcrest handbook of thermochromic liquid crystal technology. Hallcrest, GlenviewGoogle Scholar
  236. Pehl M, Werner F, Degado A (2000) First visualization of temperature fields in liquids at high pressure using thermochromic liquid crystals. Exp Fluids 29:302–304CrossRefGoogle Scholar
  237. Pershan PS (1982) Lyotropic liquid crystal. Phys Today 35(5):34–39CrossRefGoogle Scholar
  238. Platzer K-H, Hirsch C, Metzger DE, Wittig S (1992) Computer-based areal surface temperature and local heat transfer measurements with thermochromic liquid crystals (TLC). Exp Fluids 13:26–32CrossRefGoogle Scholar
  239. Pohl L, Finkenzeller U (1990) Physical properties of liquid crystals. In: Bahadur B (ed) Liquid crystals, applications and uses, vol 1. World Scientific, New Jersey, pp 139–170Google Scholar
  240. Poje AC, Lumley JL (1995) A model for large-scale structures in turbulent shear flows. J Fluid Mech 285:349–369MATHMathSciNetCrossRefGoogle Scholar
  241. Pollmann P, Stegemeyer H (1974) Influence of all-round pressure on structure of cholesteric mesophases. Berichte Der Bunsen-Gesellschaft-Physical Chemistry Chemical Physics 78:843–848Google Scholar
  242. Pottebaum TS, Gharib M (2004) The pinch-off process in a starting buoyant plume. Exp Fluids 37:87–94CrossRefGoogle Scholar
  243. Pottebaum TS, Gharib M (2006) Using oscillations to enhance heat transfer for a circular cylinder. Int J Heat Mass Transf 49:3190–3210CrossRefGoogle Scholar
  244. Pradeep AM, Sullerey RK (2004) Detection of separation in S-duct diffusers using shear sensitive liquid crystals. J Vis 7:299–307Google Scholar
  245. Praisner TJ, Smith CR (2006a) The dynamics of the horseshoe vortex and associated endwall heat transfer: part I—temporal behavior. J Turbomachinery 128:747–754CrossRefGoogle Scholar
  246. Praisner TJ, Smith CR (2006b) The dynamics of the horseshoe vortex and associated endwall heat transfer—part II- time-mean results. J Turbomach 128:755–762CrossRefGoogle Scholar
  247. Praisner TJ, Sabatini DR, Smith CR (2001) Simultaneously combined liquid crystal surface heat transfer and PIV flow-field measurements. Exp Fluids 30:1–10CrossRefGoogle Scholar
  248. Prandtl L, Tietjens OG (1934) Applied hydro- and aeromechanics. McGraw-Hill, New YorkGoogle Scholar
  249. Prasad AK (2000) Stereoscopic particle image velocimetry. Exp Fluids 29:103–116CrossRefGoogle Scholar
  250. Pratt WK (1991) Digital image processing. Wiley, New YorkMATHGoogle Scholar
  251. Raffel M, Willert M, Kompenhans J (1998) Particle image velocimetry, a practical guide. Springer, BerlinGoogle Scholar
  252. Rangel RH, Coimbra CFM (1998) General solution of the particle momentum equation in unsteady Stokes flows. J Fluid Mech 370:53–72MATHMathSciNetCrossRefGoogle Scholar
  253. Rayman B (1887) Contribution à l’histoire de la cholestérine. Bulletin de la Société Chimique de France, Nouvelle Série 47:898–901Google Scholar
  254. Reda DC, Aeschliman DP (1992) Liquid-crystal coatings for surface shear-stress visualization in hypersonic flows. AIAA J 29:155–158Google Scholar
  255. Reda DC, Muratore JJ (1994) Measurement of surface shear stress vectors using liquid crystal coatings. AIAA J 32:1576–1582CrossRefGoogle Scholar
  256. Reda DC, Wilder MC (1992) Liquid crystal coatings for surface shear-stress visualization in hypersonic flows. J Spacecr Rockets 29:155–158CrossRefGoogle Scholar
  257. Reda DC, Wilder MC (2001) Shear-sensitive liquid crystal coating method applied through transparent test surfaces. AIAA J 39:195–197CrossRefGoogle Scholar
  258. Reda DC, Muratore JJ, Heineck T (1994) Time and flow-direction responses of shear-stress-sensitive liquid crystal coatings. AIAA J 32:693–700CrossRefGoogle Scholar
  259. Reda DC, Wilder MC, Crowder JP (1997a) Simultaneous, full-surface visualizations of transition and separation using liquid crystal coatings. AIAA J 35:615–616CrossRefGoogle Scholar
  260. Reda DC, Wilder MC, Farina DJ, Zilliac G (1997b) New methodology for the measurement of surface shear stress vector distributions. AIAA J 4:608–614CrossRefGoogle Scholar
  261. Reda DC, Wilder MC, Mehta RD, Zilliac G (1998) Measurement of continuous pressure and shear distributions using coating and imaging techniques. AIAA J 36:895–899CrossRefGoogle Scholar
  262. Reinitzer F (1888) Beiträge zur kenntniss des cholesterins. Wiener Monatschr Für Chem 9:421–441CrossRefGoogle Scholar
  263. Richards CD, Richards RF (1998) Transient temperature measurements in a convectively cooled droplet. Exp Fluids 25:392–400CrossRefGoogle Scholar
  264. Roberts GT, East RA (1996) Liquid crystal thermography for heat transfer measurement in hypersonic flows: a review. J Spacecr Rockets 33:761–768CrossRefGoogle Scholar
  265. Roesgen T, Totaro R (2002) A statistical calibration technique for thermochromic liquid crystals. Exp Fluids 33:732–734Google Scholar
  266. Roshko A (1993) Perspectives on bluff body aerodynamics. J Wind Eng Ind Aerodyn 49:79–100CrossRefGoogle Scholar
  267. Rossotti H (1983) Colour, why the world isn’t gray. Princeton University Press, PrincetonGoogle Scholar
  268. Roth TB, Anderson AM (2007) The effects of film thickness, light polarization and light intensity on the light transmission characteristics of thermochromic liquid crystal. ASME J Heat Transf 129:372–378CrossRefGoogle Scholar
  269. Russ JC (2002) The image processing handbook. CRC, Boca RatonGoogle Scholar
  270. Sabatino D, Smith CR (2002) Simultaneous velocity-surface heat transfer behavior of turbulent spots. Exp Fluids 33:13–21Google Scholar
  271. Sabatino DR, Praisner TJ, Smith CR (2000) A high-accuracy calibration technique for thermochromic liquid crystal temperature measurements. Exp Fluids 28:497–505CrossRefGoogle Scholar
  272. Sage I (1990) Thermochromic liquid crystals in devices. In: Bahadur B (ed) Liquid crystals, applications and uses, vol 3. World Scientific, New Jersey, pp 301–341Google Scholar
  273. Samulski ET (1982) Polymeric liquid crystal. Phys Today 35(5):40–46CrossRefGoogle Scholar
  274. Saniei N (2002) Liquid crystals and their application in heat transfer measurements. Heat Transfer Eng 23(4):1–2CrossRefGoogle Scholar
  275. Saniei N, Yan XJ (2000) An experimental study of heat transfer from a disk rotating in an infinite environment including heat transfer enhancement by jet impingement cooling. J Enhanc Heat Transf 7:231–245Google Scholar
  276. Sargison JE, Oldfield MLG, Guo SM, Lock GD, Rawlinson AJ (2005) Flow visualisation of the external flow from a converging slot-hole film-cooling geometry. Exp Fluids 38:304–318CrossRefGoogle Scholar
  277. Savory E, Syes DM, Toy N (2000) Visualization of transition on an axisymmetric body using shear sensitive liquid crystals. Opt Diag Eng 4:16–25Google Scholar
  278. Scala LC, Dixon GD (1969) Long term stability of cholesteric liquid crystal systems. Mol Cryst Liq Cryst 7:443–455CrossRefGoogle Scholar
  279. Scala LC, Dixon GD (1970) Long term stability of cholesteric liquid crystal systems 2. Mol Cryst Liq Cryst 10:411–423CrossRefGoogle Scholar
  280. Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13:R1–R19CrossRefGoogle Scholar
  281. Scarano F, Riethmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids(Suppl) S52–S60Google Scholar
  282. Schöler H (1990) Thermal imaging on missiles in hypersonic flow. AGARD fluid dynamics symposium on “Missile Aerodynamics” Friedrichshafen, Germany 22–26 29:1–29:5Google Scholar
  283. Shusser M, Gharib M (2000) Energy and velocity of a forming vortex ring. J Fluid Mech 416:173–185MATHMathSciNetCrossRefGoogle Scholar
  284. Sillekens JJM, Rindt CCM, van Steevenhoven AA (1998) Development of laminar mixed convection in a horizontal square channel with heated side walls. Int J Heat Fluid Flow 19:270–281Google Scholar
  285. Simonich JC, Moffat RJ (1982) New technique for mapping heat-transfer coefficient contours. Rev Sci Instrum 53:678–683CrossRefGoogle Scholar
  286. Smith CR, Praisner TJ, Sabatino DR (2000) Surface temperature sensing with thermochromic liquid crystals. In: Smits AJ, Lim TT (eds) Flow visualization, techniques and examples. Imperial College Press, Singapore, pp 149–167Google Scholar
  287. Smith CR, Sabatino DR, Praisner TJ (2001) Temperature sensing with thermochromic liquid crystals. Exp Fluids 30:190–201CrossRefGoogle Scholar
  288. Soloff SM, Adrian RJ, Liu ZC (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1451CrossRefGoogle Scholar
  289. Son C, Gillespie D, Ireland P, Dailey GM (2001) Heat transfer and flow characteristics of an engine representative impingement cooling system. J Turbomach 123:154–160CrossRefGoogle Scholar
  290. Spencer MC, Jones TV, Lock GD (1996) Endwall heat transfer measurements in an annular cascade of nozzle guide vanes at engine representative Reynolds and Mach numbers. J Heat Fluid Flow 17:139–147CrossRefGoogle Scholar
  291. Stasiek J (1997) Thermochromic liquid crystals and true colour image processing in heat transfer and fluid-flow research. Heat Mass Transf 33:27–39CrossRefGoogle Scholar
  292. Stasiek J, Stasiek A, Jewartowski M, Collins MW (2006) Liquid crystal thermometry and true-colour digital image processing. Opt Laser Technol 38:243–256CrossRefGoogle Scholar
  293. Stasiek JA, Kowalewski TA (2002) Thermochromic liquid crystals applied for heat transfer research. Opto-electron Rev 10:1–10Google Scholar
  294. Sun JH, Leong KC, Liu CY (1997) Influence of hue origin on the hue-temperature calibration of thermochromic liquid crystals. Heat Mass Transf 33:121–127CrossRefGoogle Scholar
  295. Tanda G (2004) Heat transfer in rectangular channels with transverse and v-shaped broken ribs. Int J Heat Mass Transf 47:229–243CrossRefGoogle Scholar
  296. Tariq A, Ranigrahi PK, Muralidhar K (2004) Flow and heat transfer in the wake of a surface-mounted rib with a slit. Exp Fluids 37:701–719CrossRefGoogle Scholar
  297. Tariq A, Singh K, Panigrahi PK (2003) Flow and heat transfer in a rectangular duct with single rib and two ribs mounted on the bottom surface. J Enhanc Heat Transf 10:171–198CrossRefGoogle Scholar
  298. Teng S, Sohn DK, Han JC (2000) Unsteady wake effect on film temperature an effectiveness distributions for a gas turbine blade. J Turbomach 122:340–347CrossRefGoogle Scholar
  299. Toy N, Disimile PJ, Savory E (1999) Local shear stress measurements within a rectangular yawed cavity using liquid crystals. Opt Diag Engr 3:91–101Google Scholar
  300. Trautman MA, Glezer A (2002) The manipulation of the streamwise vortex instability in a natural convection boundary layer along a heated inclined flat plate. J Fluid Mech 470:31–61MATHMathSciNetCrossRefGoogle Scholar
  301. Treuner M, Rath HJ, Duda U, Siekmann J (1995) Thermocapillary flow in drops under low gravity analysed by the use of liquid crystals. Exp Fluids 19:264–273CrossRefGoogle Scholar
  302. Turner JS (1973) Buoyancy effects in fluids. Cambridge University Press, CambridgeMATHGoogle Scholar
  303. Uzol O, Camci C (2005) Heat transfer, pressure loss and flow field measurements downstream of staggered two-row circular and elliptical pin fin arrays. ASME J Heat Transf 127:458–471CrossRefGoogle Scholar
  304. Vejrazka J, Marty Ph (2007) An alternative technique for the interpretation of temperature measurements using thermochromic liquid crystals. Heat Transf Eng 28:154–162CrossRefGoogle Scholar
  305. von Wolfersdorf J (2007) Influence of lateral conduction due to flow temperature variations in transient heat transfer measurements. Int J Heat Mass Transf 50:1122–1127MATHCrossRefGoogle Scholar
  306. Wagner E, Stephan P (2007) Frequency response of a surface thermometer based on unencapsulated thermochromic liquid crystals. Exp Therm Fluid Sci 31:687–699CrossRefGoogle Scholar
  307. Wagner G, Schneider E, von Wolfersdorf J, Ott P, Weigand B (2007) Method for analysis of showerhead film cooling experiments on highly curved surfaces. Exp Therm Fluid Sci 31:381–389CrossRefGoogle Scholar
  308. Wang Z, Ireland PT, Jones TV, Davenport R (1996) A color image processing system for transient liquid crystal heat transfer experiments. J Turbomach 118:421–427Google Scholar
  309. Wang L, Sundén B (2004) An experimental investigation of heat transfer and fluid flow in a rectangular duct with broken v-shaped ribs. Exp Heat Transf 17:243–259CrossRefGoogle Scholar
  310. Westerweel J (1993) Digital particle image velocimetry—theory and application. PhD thesis, Delft University PressGoogle Scholar
  311. Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379–1392CrossRefGoogle Scholar
  312. Wiberg R, Lior N (2004) Errors in thermochromic liquid crystal thermometry. Rev Sci Instrum 75(9):2985–2993CrossRefGoogle Scholar
  313. Wierzbowski M, Stasiek J (2002) Liquid crystal technique application for heat transfer investigation in a fin-tube heat exchanger element. J Vis 5:161–168CrossRefGoogle Scholar
  314. Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193CrossRefGoogle Scholar
  315. Woodmnasee WE (1966) Cholesteric liquid crystals and their application to thermal nondestructive testing. Mater Eval 24:564–566 571–572Google Scholar
  316. Woodmnasee WE (1968) Aerospace thermal mapping applications of liquid crystals. Appl Opt 7:1721–1727CrossRefGoogle Scholar
  317. Wozniak G, Wozniak K, Siekmann J (1996) Non-isothermal flow diagnostics using microencapsulated cholesteric particles. Appl Sci Res 56:145–156CrossRefGoogle Scholar
  318. Wright WD (1928–1929) A re-determination of the mixture curves of the spectrum. Trans Opt Soc Lond 30:141–164Google Scholar
  319. Wyszecki G, Stiles WS (1982) Color science: concepts and methods, quantitative data and formulae. Wiley, New YorkGoogle Scholar
  320. Yan X, Saniei N (1996) Measurements of local heat transfer coefficients from a flat plate to a pair of circular air impinging jets. Exp Heat Transf 1:29–47Google Scholar
  321. Yan X, Saniei N (1997) Heat transfer from an obliquely impinging circular air jet to a flat plate. Int J Heat Fluid Flow 18:591–599CrossRefGoogle Scholar
  322. Yan Y, Owen JM (2002) Uncertainties in transient heat transfer measurements with liquid crystal. Int J Heat Fluid Flow 23:29–35CrossRefGoogle Scholar
  323. Yoon SH, Kim MS (2002) Investigation of circumferential variation of heat transfer coefficients during in-tube evaporation for R-22 and R-407C using liquid crystal. ASME J Heat Transf 124:845–853CrossRefGoogle Scholar
  324. Young T (1802) On the theory of light and colours (The 1801 Bakerian Lecture). Philos Trans R Soc Lond 92:12–48CrossRefGoogle Scholar
  325. Yuen CHN, Martinez-Botas RF (2005) Film cooling characteristics of rows of round holes at various streamwise angles in a crossflow: part II. Heat transfer coefficients. Int J Heat Mass Transf 48:5017–5035CrossRefGoogle Scholar
  326. Zhang X, Stasiek J, Collins MW (1995) Experimental and numerical analysis of convective heat transfer in turbulent channel flow with square and circular columns. Exp Therm Fluid Sci 10:229–237CrossRefGoogle Scholar
  327. Zharkova GM, Streltsov SA, Khachaturyan VM, Samsonova I (1999a) Selective reflection of light from aqueous dispersions of encapsulated cholesteric liquid crystals. Mol Cryst Liq Cryst 331:635–642CrossRefGoogle Scholar
  328. Zharkova GM, Streltsov SA, Khachaturyan VM (1999b) Aqueous dispersions of cholesteric liquid crystals and their optical properties. J Struct Chem 40:419–423CrossRefGoogle Scholar
  329. Zhong S, Kittichaikan C, Hodson HP, Ireland PT (1999) A study of unsteady wake-induced boundary-layer transition with thermochromic liquid crystals. Proc Inst Mech Eng 213:163–171CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Department of Aeronautics and AstronauticsUniversity of WashingtonSeattleUSA

Personalised recommendations