Experiments in Fluids

, Volume 46, Issue 1, pp 1–26 | Cite as

Single dielectric barrier discharge plasma enhanced aerodynamics: physics, modeling and applications

  • Thomas C. Corke
  • Martiqua L. Post
  • Dmitriy M. Orlov
Review Article

Abstract

The term “plasma actuator” has been a part of the fluid dynamics flow control vernacular for more than a decade. A particular type of plasma actuator that has gained wide use is based on a single dielectric barrier discharge (SDBD) mechanism that has desirable features for use in air at atmospheric pressures. For these actuators, the mechanism of flow control is through a generated body force vector that couples with the momentum in the external flow. The body force can be derived from first principles and the plasma actuator effect can be easily incorporated into flow solvers so that their placement and operation can be optimized. They have been used in a wide range of applications that include bluff body wake control; lift augmentation and separation control on a variety of lifting surfaces ranging from fixed wings with various degrees of sweep, wind turbine rotors and pitching airfoils simulating helicopter rotors; flow separation and tip-casing clearance flow control to reduce losses in turbines, to control flow surge and stall in compressors; and in exciting instabilities in boundary layers at subsonic to supersonic Mach numbers for turbulent transition control. New applications continue to appear through programs in a growing number of US universities and government laboratories, as well as in Germany, France, England, Netherland, Russia, Japan and China. This paper provides an overview of the physics, design and modeling of SDBD plasma actuators. It then presents their use in a number of applications that includes both numerical flow simulations and experiments together.

List of symbols

C

capacitance

CD

drag coefficient

CL

lift coefficient

D

drag force

E

electric field

Eb

breakdown electric field

Es

sustaining electric field

F+

reduced frequency = fLsep/U

I

current

Ic

conduction current

Id

displacement current

L

lift force

Lsep

streamwise extent of separation region

P

power

R

resistance

Rec

Reynolds number based on chord length and free-stream velocity

T

period of ac cycle

Tmax

maximum thrust

U

mean streamwise velocity

U

free-stream velocity

u

root-mean-square of streamwise velocity fluctuations

V

plasma actuator voltage

Vac

ac voltage

Vp–p

ac peak-to-peak voltage

c

wing chord

fac

ac excitation frequency of unsteady plasma actuator

fb

body force

q

dynamic pressure

rf

radio frequency

x, y

axial coordinates

t

time

α

angle of attack

αs

stall angle of attack

α0 L

zero lift angle of attack

ε0

universal charge in a vacuum

λD

Deby length

ϕ

phase shift

ω

2π/fac

ρc

charge density

φ

electric potential

References

  1. Asghar A, Jumper EJ, Corke TC (2006) On the use of Reynolds number as the scaling parameter for the performance of plasma actuator in a weakly compressible flow AIAA Paper 2006-21Google Scholar
  2. Balcer BE, Franke ME, Rivir RB (2006) Effects of plasma induced velocity on boundary layer Flow AIAA Paper 2006-875Google Scholar
  3. BenGadri R, Rabehi A, Massines F, Segur P (1994) Numerical modelling of atmospheric pressure low-frequency glow discharge between insulated elecrodes. In: Proceedings of the XII ESCAMPIG, Netherlands, 23–26 August. pp 228–229Google Scholar
  4. Boeuf JP (1987) Numerical model of rf glow discharges. Phys Rev A 36(6):2782–2791CrossRefGoogle Scholar
  5. Boeuf JP, Pitchford LC (2005) Electrohydrodynamic force and aerodynamic flow acceleration in surface dielectric barrier discharge. J App Phys 97Google Scholar
  6. Cavalieri D (1995) On the experimental design for instability analysis on a cone at Mach 3.5 and 6.0 using a corona discharge perturbation method. Dissertation, Illinois Institute of TechnologyGoogle Scholar
  7. Corke TC, Matlis E (2000) Phased plasma arrays for unsteady flow control AIAA paper 2000-2323Google Scholar
  8. Corke T, Cavalieri D, Matlis E (2001) Boundary layer instability on a sharp cone at mach 3.5 with controlled input. AIAA J 40:1015CrossRefGoogle Scholar
  9. Corke TC, Jumper EJ, Post ML, Orlov D, McLaughlin TE (2002) Application of weakly-ionized plasmas as wing flow-control devices AIAA Paper 2002-0350Google Scholar
  10. Corke T, He C, Patel M (2004) Plasma flaps and slats: an application of weakly-ionized plasma actuators AIAA Paper 2004-2127Google Scholar
  11. Corke T, Mertz B, Patel M (2006a) Plasma flow control optimized airfoil AIAA Paper 2006-1208Google Scholar
  12. Corke TC, Mertz B, Patel MP (2006b) Plasma flow control optimized airfoil AIAA paper 2006-1208Google Scholar
  13. Corke T, Post M, Orlov D (2007a) Overview of plasma enhanced aerodynamics: Concepts, optimization, and applications. AIAA J Prop PowerGoogle Scholar
  14. Corke TC, Post ML, Orlov DM (2007b) Sdbd plasma enhanced aerodynamics: concepts, optimization and applications. Prog Aerosp Sci 43:193–217CrossRefGoogle Scholar
  15. Davidson G, O’Neil R (1964) Optical radiation from nitrogen and air at high pressure excited by energetic electrons. J Chem Phys 41:3946–3949CrossRefGoogle Scholar
  16. Decomps P, Massines F, Mayoux C (1994) Electrical and optical diagnosis of an atmospheric pressure glow discharge. Acta Phys Univ Com 47Google Scholar
  17. Do H, Kim W, Mungal M, Capelli M (2007) Bluff body flow control using surface dielectric barrier discharges AIAA Paper 2007-0939Google Scholar
  18. Douville T, Stephens J, Corke T, Morris S (2006) Turbine blade tip leakage flow control by partial squealer tip and plasma actuators AIAA Paper 2006-20Google Scholar
  19. Eliasson B, Kogelschatz U (1991) IEEE Trans Plasma Sci 19:309CrossRefGoogle Scholar
  20. Enloe L, McLaughlin T, VanDyken, Kachner, Jumper E, Corke T (2004a) Mechanisms and responses of a single-dielectric barrier plasma actuator: plasma morphology AIAA 42:589–594Google Scholar
  21. Enloe L, McLaughlin T, VanDyken, Kachner, Jumper E, Corke T, Post M, Haddad O (2004b) Mechanisms and responses odf a single-dielectric barrier plasma actuator: geometric effects. AIAA 42:595–604Google Scholar
  22. Falkenstein Z, Coogan J (1997) Microdischarge behaviour in the silent discharge of nitrogen-oxygen and water-air mixtures. J Phys D App Phys 30:817–825CrossRefGoogle Scholar
  23. Font G (2004) Boundary layer control with atmospheric plasma discharges. AIAA Paper 2004-3574Google Scholar
  24. Font G, Morgan WL (2005) Plasma discharges in atmospheric pressure oxygen for boundary layer separation control. AIAA paper 2005-4632Google Scholar
  25. Forte M, Jolibois J, Moreau F, Touchard G, Cazalens M (2006) Optimization of a dielectric barrier discharge actuator by stationary and non-stationary measurements of the induced flow velocity—application to flow control. 3rd AIAA flow control conference, AIAA Paper 2006-2863Google Scholar
  26. Gaitonde D, Visbal M, Roy S (2005a) Control of flow past a wing section with plasma-based body forces. AIAA paper 2005-5302Google Scholar
  27. Gaitonde DV, Visbal MR, Roy S (2005b) Contol of flow past a wing section with plasma-based body forces. AIAA Paper 2005-5302Google Scholar
  28. Gibalov V, Pietsch G (2000a) The development of dielectric barrier discharges in gas gaps and surfaces. J Phys D Appl Phys 33:2618CrossRefGoogle Scholar
  29. Gibalov V, Pietsch G (2000b) The development of dielectric barrier discharges in gas gaps and on surfaces J Phys D 33Google Scholar
  30. Goeksel B, Rechenberg I (2004) Active separation flow control experiments in weakly ionized air. In: 10th EUROMECH European Turbulence Conference, BarcelonaGoogle Scholar
  31. Goeksel B, Rechenberg I, Greenblatt D, Paschereit C (2006) Steady and unsteady plasma wall jets for separation and circulation control. AIAA Paper 2006-3686Google Scholar
  32. Golubovskii Y, Maiorov V, Behnke J, Behnke J (2002) Influence of interaction between charged particles and dielectric surface over a homogeneous barrier discharge in nitrogen. J Phys D Appl Phys 35Google Scholar
  33. Greenblatt D, Paschal K, Schaeffler N, Washburn A, Harris J, Yao C (2004) A separation control cfd validation test case. part 1: baseline and steady suction. AIAA Paper 2004-2220Google Scholar
  34. He C (2008) SDBD Plasma actuator separation control. Dissertation, University of Notre DameGoogle Scholar
  35. He C, Corke TC, Patel M (2007) Numerical and experimental analysis of plasma flow control over a hump model. AIAA paper 2007-0935Google Scholar
  36. Huang J (2005) Documentation and control of flow separation on a linear cascade of Pak-B blades using plasma actuators. Dissertation, University of Notre DameGoogle Scholar
  37. Huang J, Corke T, Thomas F (2006a) Plasma actuators for separation sontrol of low pressure turbine blades. AIAA J 44:51CrossRefGoogle Scholar
  38. Huang J, Corke T, Thomas F (2006b) Unsteady plasma actuators for separation control of low-pressure turbine blades AIAA J 44:1477CrossRefGoogle Scholar
  39. Hultgren LS, Ashpis DE (2003) Demonstration of separation delay with glow-discharge plasma actuators. AIAA Paper 2003-1025Google Scholar
  40. Iqbal M, Corke T, Thomas F (2007) Parametric optimization of single dielectric barrier discharge (sdbd) plasma actuators submitted. AIAA JGoogle Scholar
  41. Kakuta S, Kamata T, Makabe T, Kobayashi S, Terai K, Tamagawa T (1995) Study of surface charges on dielectric electrodes in a radio-frequency glow discharge. J Appl Phys 77Google Scholar
  42. Kanazawa S, Kogoma M, Moriwaki T, Okazaki S (1988) Stable glow plasma at atmospheric pressure. J Phys D Appl Phys 21:836CrossRefGoogle Scholar
  43. Kanazawa S, Kogoma M, Okazaki S, Moriwaki T (1989) Glow plasma treatment at atmospheric presure for surface modification and film deposition. Nuclear Inst Methods Phys Res B37:842CrossRefGoogle Scholar
  44. Kanzawa S, Kogoma M, Kanazawa S, Moriwaki T, Okazaki S (1990) The improvement of atmospheric-pressure glow plasma method and the deposition of organic films. J Phys D Appl Phys 23:374CrossRefGoogle Scholar
  45. Kline M, Miller N, Walhout M (2001) Time-resolved imaging of spatiotemporal patterns in a one-dimensional dielectric-barrier discharge system. Phys Rev E 64:26402–1CrossRefGoogle Scholar
  46. Kogelschatz U (1977) In: Proceedings of the international conference on phenomena ionized gases, ICPIG XXIII, Tolouse, FRGoogle Scholar
  47. Kogoma M, Okazaki S (1994) Raising of ozone formation efficiency in a homogeneous glow discharge plasma at atmospheric pressure. J Phys D Appl Phys 27:1985CrossRefGoogle Scholar
  48. Kosinov A, Maslov A, Shevelkov S (1990) Experiments on the stability of supersonic laminar boundary layers. J Fluid Mech 219: 621CrossRefGoogle Scholar
  49. Kozlov K, Wagner H-E, Brandenburg R, Michel P (2001) Spatio-temporally resolved spectroscopic diagnostics of the barrier discharge in air at atmosperic pressure. J Phys D Appl Phys 34Google Scholar
  50. Kunhardt E (1980) Electrical breakdown of gases: the pre-breakdownstage. IEEE Trans Plasma Sci PS-8:234Google Scholar
  51. Kunhardt E (2000) Generation of large volume atmospheric pressure nonequilibrium plasmas. IEEE Trans Plasma Sci 28(1): 189–199CrossRefGoogle Scholar
  52. Kunhardt E, Luessen L (1981) Electrical breakdown and discharges. Plenum, New YorkGoogle Scholar
  53. Landau LD, Lifshitz, E (1984) Electrodynamics of continuous media PergamonGoogle Scholar
  54. Langmuir I (1926) Proc Nat Acad Sci 14:627CrossRefGoogle Scholar
  55. Likhanskii A, Shneider M, Macheret S, Miles R (2006) Modeling of interaction between weakly ionized near-surface plasmas and gas flow. AIAA Paper 2006-1204Google Scholar
  56. List J, Byerley AR, McLaughlin TE, VanDyken RD (2003) Using a plasma actuator to control laminar separation on a linear cascade turbine blade. AIAA Paper 2003-1026Google Scholar
  57. Llewellyn-Jones F (1966) The glow discharge and an introduction to plasma physics, Methuen, New York, USAGoogle Scholar
  58. Madani M, Bogaerts A, Gijbels R, Vangeneugden D (2003) Modelling of a dielectric barrier glow discharge at atmospheric pressure in nitrogen. In: International conference on phenomena in ionized gasesGoogle Scholar
  59. Massines F, Ghadri R, Decomps P, Rabehi A, Segur P, Mayoux C (1995) Atmospheric pressure dielectric controlled glow discharges: diagnostics and modelling. In: Proceedings of the international conference on phenomena ionized gases, ICPIG XXII, Hoboken, NJ, p 306Google Scholar
  60. Massines F, Rabehi A, Decomps P, Ben Gadri R, Segur P, Mayoux C (1998a) Experimental and theoretical study of a glow discharge at atmosperic pressure controlled by dielectric barrier. J Appl Phys 83Google Scholar
  61. Massines F, Rabehi A, Descomps P, Gadri R, Segur P, Mayoux C (1998b) Mechanisms of a glow discharge at atmospheric pressure controlled by dielectric barrier. J Appl Phys 83-86:2950CrossRefGoogle Scholar
  62. Matlis EH (2004) Controlled experiments on instabilities and transition to turbulence on a sharp cone at Mach 3.5. Dissertation, University of Notre DameGoogle Scholar
  63. Matlis E, Corke T (2005) AC plasma anemometer for hypersonic Mach number experiments. AIAA Paper 2005-0952Google Scholar
  64. Matlis E, Corke T, Cameron J, Morris S (2008a) A.c. plasma anemometer for axial compressor stall warning. 12th international symposium on transport phenomena and dynamics of rotating machines, 17–22 FebruaryGoogle Scholar
  65. Matlis E, Corke T, Gogineni S (2008b) Private communications, University of Notre DameGoogle Scholar
  66. Meek J, Craggs JDE (1978) Electrical breakdown of gases. Wiley, ChichesterGoogle Scholar
  67. Moreau E (2007) Airflow control by non-thermal plasma actuators J Phys D Appl Physics 40:605–636CrossRefGoogle Scholar
  68. Morris SC, Corke TC, VanNess D, Stephens J, Douville T (2005) Tip clearance control using plasma actuators. AIAA paper 2005-0782Google Scholar
  69. Nasser E (1971) Fundamentals of gaseous ionization and plasma electronics, Chap. 12. Wiley, New YorkGoogle Scholar
  70. Naude N, Cambronne J-P, Gherardi N, Massines F (2004) Electrical model of an atmospheric pressure townsend-like discharge (aptd). Eur Phys J Appl Phys (November 2004) 1–7Google Scholar
  71. Nelson C, Cain A, Patel M, Corke T (2006a) Simulation of plasma actuators using the wind-US code. AIAA Paper 2006-634Google Scholar
  72. Nelson C, Cain A, Patel M, Corke T (2006b) Simulation of plasma actuators using the wind-US code. AIAA Paper 2006-0634Google Scholar
  73. Nelson R, Corke T, Patel M, Ng T (2007) Modification of the flow structure over a UAV wing for roll control. AIAA Paper 2007-0884Google Scholar
  74. Okazaki S, Kogoma M, Uehara M, Kimura Y (1993) Appearance of stable glow discharge in air, argon oxygen, and nitrogen at atmospheric pressure using 50 hz source. J Phys D Appl Phys 26:889CrossRefGoogle Scholar
  75. Orlov DM (2006) Modelling and simulation of single dielectric barrier discharge plasma actuators. Dissertation, University of Notre DameGoogle Scholar
  76. Orlov D, Corke T (2005) Numerical simulation of aerodynamic plasma actuator effects. AIAA Paper 2005-1083Google Scholar
  77. Orlov D, Corke T, Haddad O (2003) DNS modeling of plasma array flow actuators. In: Bulletin of the American Physical Society Division of Fluid Dynamics, vol 48Google Scholar
  78. Orlov D, Corke T, Patel M (2006) Electric circuit model for aerodynamic plasma actuator. AIAA Paper 2006-1206Google Scholar
  79. Pai S, Guo X, Zhou T (1996) Closed form analytic solution describing glow discharge plasma. Phys Plasmas 3Google Scholar
  80. Pashaie B, Dhali S, Honea F (1994) Electrical characteristics of a coaxial dielectric barrier discharge. J Phys D Appl Phys 27:2107CrossRefGoogle Scholar
  81. Patel MP, Sowle ZH, Corke TC, He C (2006) Autonomous sensing and control of wing stall using a smart plasma slat. AIAA Paper 2006-1207Google Scholar
  82. Patel M, Ng T, Vasudevan S, Corke T, He S (2007a) Aerodynamic control using windward-surface plasma actuators on a separation ramp. J Aircraft 44(6):1889–1895CrossRefGoogle Scholar
  83. Patel M, Ng T, Vasudevan S, Corke T, He S (2007b) Plasma actuators for hingeless aerodynamic control of an unmanned air vehicle. J Aircraft 44(4):1264–1274CrossRefGoogle Scholar
  84. Patel M, Ng T, Vasudevan S, Corke T, Post M, McLaughlin T, Suchomel C (2008) Scaling effects of an aerodynamic plasma actuator. J Aircraft 45(1):223–236CrossRefGoogle Scholar
  85. Paulus M, Stals L, Rude U, Rauschenbach B (1999) Two-dimensional simulation of plasma-based ion implantation J Appl Phys 85Google Scholar
  86. Poggie J (2005) DC glow discharges: a computational study for flow control applications. AIAA Paper 2005-5303Google Scholar
  87. Porter C, Baughn J, McLaughlin T, Enloe C, Font G (2006) Temporal force measurements on an aerodynamic plasma actuator. AIAA Paper 2006-104Google Scholar
  88. Porter C, McLaughlin T, Enloe L, Font G (2007) Boundary layer control using DBD plasma actuator. AIAA Paper 2007-0786Google Scholar
  89. Post ML (2001) Phased plasma actuators for unsteady flow control. Dissertation, M.S. in Aerospace and Mechanical Engineering, University of Notre DameGoogle Scholar
  90. Post ML (2004) Plasma actuators for separation control on stationary and unstationary airfoils. Dissertation, University of Notre DameGoogle Scholar
  91. Post ML, Corke TC (2003) Separation control on high angle of attack airfoil using plasma actuator. AIAA Paper 2003-1024Google Scholar
  92. Post ML, Corke TC (2004) Separation control using plasma actuators—stationary and oscillatory airfoils. AIAA Paper 2004-0841Google Scholar
  93. Post M, Corke T (2004) Separation control on high angle of attack airfoil using plasma actuators. AIAA J 42:2177CrossRefGoogle Scholar
  94. Post M, Erturk E, Corke T (2001) Phased plasma arrays for unsteady flow control. In: Bulletin of the American Physical Society Division of Fluid Dynamics, vol 46Google Scholar
  95. Rabehi A, BenGadri R, Segur P, Massines F, Decomps P (1994) Numerical modelling of high pressure glow discharges controlled by dielectric barrier. In: Proceedings of the converence on electrical insulation and dielectric phenomena, Arlington, TX, 23–26 October, 1994, pp 840–845Google Scholar
  96. Raizer Y (1991) Gas discharge physics. Springer, BerlinGoogle Scholar
  97. Rivir R (2007) Effects of pulsed dc discharge plasma actuators in a separated LPT boundary layer. AIAA Paper 2007-0942Google Scholar
  98. Rizzetta D, Visbal M (2007) Numerical investigation of plasma-based flow control for a transitional highly-loaded low-pressure turbine. AIAA Paper 2007-0938Google Scholar
  99. Roth J (1995a) Industrial plasma engineering. Inst Phys Publishing, PhiladelphiaGoogle Scholar
  100. Roth J (1995b) Industrial plasma engineering Institute of Physics PublishingGoogle Scholar
  101. Roth J, Sherman D, Wilkinson S (1998) Boundary layer flow control with one atmosphere uniform glow discharge surface plasma. AIAA Paper 1998-0328Google Scholar
  102. Roth J, Sherman D, Wilkinson S (2000) Electrohydrodynamic flow control with a glow-discharge surface plasma. AIAA Journal 38Google Scholar
  103. Roy S, Gaitonde DV (2004) Radio frequency induced ionized collisional flow model for application at atmospheric pressures. J Appl PhysGoogle Scholar
  104. Roy S, Gaitonde DV (2005) Modeling surface discharge effects of atmospheric RF on gas flow control. AIAA Paper 2005-0160Google Scholar
  105. Roy S, Pandey B, Poggie J, Gaitonde DV (2003) Modeling low pressure collisional plasma sheath with space-charge effect. Phys Plasmas 10:2578–2585CrossRefGoogle Scholar
  106. Shyy W, Jayaraman B, Andersson A (2002) Modeling of glow discharge-induced fluid dynamics. J Appl Phys 92Google Scholar
  107. Suzen Y, Huang P (2006) Simulation of flow separation control using plasma actuators. AIAA paper 2006-877Google Scholar
  108. Suzen Y, Huang P, Jacob J, Ashpis D (2005) Numerical simulations of plasma based flow control applications. AIAA Paper 2005-4633Google Scholar
  109. Suzen Y, Huang G, Ashpis D (2007) Numerical simulations of flow separation control in low-pressure turbines using plasma actuators. AIAA Paper 2007-0937Google Scholar
  110. Thomas FO, Kozlov A, Corke TC (2006) Plasma actuators for bluff body flow control. AIAA paper 2006-2845Google Scholar
  111. Thomas F, Kozlov A, Corke T (2008) Plasma actuators for bluff body flow control. AIAA J (in press)Google Scholar
  112. Trunec D, Brablec A, Stastny F (1998) Contrib Plasma Phys 38:435CrossRefGoogle Scholar
  113. Van Ness DK, Corke TC, Morris SC (2006) Turbine tip clearance flow control using plasma actuators. AIAA Paper 2006-21Google Scholar
  114. Vidmar R, Stalter K (2003) Air chemistry and power to generate and sustain plasma: plasma lifetime calculations. AIAA Paper 2003-1189Google Scholar
  115. Visbal MR, Gaitonde DV (2006) Control of vortical flows using simulated plasma actuators. AIAA Paper 2006-505Google Scholar
  116. Voikov V, Corke T, Haddad O (2004) Numerical simulation of flow control over airfoils using plasma actuators. In: Bulletin of the American Physical Society Division of Fluid Dynamics, vol 49Google Scholar
  117. Wilkinson SP (2003) Investigation of an oscillating surface plasma for turbulent drag reduction. AIAA Paper 2003-1023Google Scholar
  118. Yokoyama T, Kogoma M, Moriwaki T, Okazaki S (1990) The mechanism of the stabilization of glow plasma at atmospheric pressure. J Phys D Appl Phys 23:1125CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Thomas C. Corke
    • 1
  • Martiqua L. Post
    • 2
  • Dmitriy M. Orlov
    • 2
  1. 1.Aerospace and Mechanical Engineering Department, Center for Flow Physics and ControlUniversity of Notre DameNotre DameUSA
  2. 2.US Air Force AcademyColorado SpringsUSA

Personalised recommendations