Experiments in Fluids

, Volume 45, Issue 6, pp 987–997 | Cite as

Modified control grid interpolation for the volumetric reconstruction of fluid flows

  • David H. Frakes
  • Kerem Pekkan
  • Lakshmi P. Dasi
  • Hiroumi D. Kitajima
  • Diane de Zelicourt
  • Hwa Liang Leo
  • Josie Carberry
  • Kartik Sundareswaran
  • Helene Simon
  • Ajit P. Yoganathan
Research Article

Abstract

Complex applications in fluid dynamics research often require more highly resolved velocity data than direct measurements or simulations provide. The advent of stereo PIV and PCMR techniques has advanced the state-of-the-art in flow velocity measurement, but 3D spatial resolution remains limited. Here a new technique is proposed for velocity data interpolation to address this problem. The new method performs with higher quality than competing solutions from the literature in terms of accurately interpolating velocities, maintaining fluid structure and domain boundaries, and preserving coherent structures.

References

  1. Chen MC, Willson AN Jr (2000) Motion-vector optimization of control grid interpolation and overlapped block motion compensation using iterated dynamic programming. IEEE Trans Imaging Proc 9:1145–1147MATHCrossRefGoogle Scholar
  2. Derou D, Dinten J, Herault L, Niez J (1995) Physical-model based reconstruction of the global instantaneous velocity field from velocity measurement at a few points. In: Proceedings: physics-based modeling in computer vision, p 63Google Scholar
  3. Elkins CJ, Alley MT (2007) Magnetic resonance velocimetry: applications of magnetic resonance imaging in the measurement of fluid motion. Exp Fluids 43:823–858CrossRefGoogle Scholar
  4. Frakes DH, Monaco J, Smith M (2001) Suppression of atmospheric turbulence in video using an adaptive control grid interpolation approach. In: Proceedings: international conference on acoustics, speech, and signal processing, May 2001Google Scholar
  5. Frakes DH, Conrad C, Healy T, Monaco JW, Smith MJT, Fogel M, Sharma S, Yoganathan AP (2003) Application of an adaptive control grid interpolation technique to morphological vascular reconstruction. IEEE Trans Biomed Eng 50:197–206CrossRefGoogle Scholar
  6. Frakes DH, Smith MJT, de Zelicourt D, Pekkan K, Yoganathan AP (2004) Three-dimensional velocity field reconstruction. J Biomech Eng 126:727–735CrossRefGoogle Scholar
  7. Frakes DH, Pekkan K, Dasi LP, Kitajima HD, Yoganathan AP, Smith MJT (2008) A new adaptive method for registration-based medical image interpolation. IEEE Trans Med Imaging 27:370–377CrossRefGoogle Scholar
  8. Ge L, Jones SC, Sotiropoulos F, Healy TM, Yoganathan AP (2003) Numerical simulation of flow in mechanical heart valves: grid resolution and the assumption of flow symmetry. J Biomech Eng 125:709–718CrossRefGoogle Scholar
  9. Ge L, Leo HL, Sotiropoulos F, Yoganathan AP (2005) Flow in a mechanical bileaflet heart valve at laminar and near-peak systole flow rates: CFD simulations and experiments. J Biomech Eng 127:782–797CrossRefGoogle Scholar
  10. Grevera GJ, Udupa JK (1996) Shape-based interpolation of multidimensional grey-level images. IEEE Trans Med Imaging 15:881–892CrossRefGoogle Scholar
  11. Horn B (1968) Robot vision. The MIT Press, Cambridge, pp 280–292Google Scholar
  12. Karatekin O, Wang FY, Charbonnier JM (1998) Characterization of a bluff body wake using LDV and PIV techniques. In: Ninth international symposium on applications of laser techniques to fluid mechanics, July 1998Google Scholar
  13. Kimura Y, Herring JR (1996) Diffusion in stably stratified turbulence. J Fluid Mech 328:253–269MATHCrossRefGoogle Scholar
  14. Lowitzsch S (2004) Approximation and interpolation employing divergence-free radial basis functions with applications. Ph.D. thesis, Texas A&M UniversityGoogle Scholar
  15. Melnikov DP, Shevtsova VM (2005) Liquid particles tracing in three-dimensional buoyancy driven flows. Fluid Dyn Mater Process 1:189–199Google Scholar
  16. Monaco JW (1997) Motion models for video applications. Ph.D. thesis, Georgia Institute of TechnologyGoogle Scholar
  17. Nguyen TT, Biadillah Y, Mongrain R, Brunette J, Tardif JC, Bertrand OF (2004) A method for matching the refractive index and kinematic viscosity of a blood analog for flow visualization in hydraulic cardiovascular models. J Biomech Eng 126:529–535CrossRefGoogle Scholar
  18. Ozturk C, Derbyshire JA, McVeigh ERM (2003) Estimating motion from MRI data. Proc IEEE 91:1627–1648CrossRefGoogle Scholar
  19. Pekkan K, Kitajima HD, de Zelicourt D, Forbess JM, Parks WJ, Fogel MA, Sharma S, Kanter KR, Frakes DH, Yoganathan AP (2005) Total cavopulmonary connection flow with functional left pulmonary artery stenosis: angioplasty and fenestration in vitro. Circulation 112:3264–3271CrossRefGoogle Scholar
  20. Penney GP, Schnabel JA, Rueckert D, Viergever MA, Niessen WJ (2004) Registration-based interpolation. IEEE Trans Med Imaging 23:922–926CrossRefGoogle Scholar
  21. Raz S, Einav S, Alemu Y, Bluestein D (2007) DPIV prediction of flow induced platelet activation—comparison to numerical predictions. Ann Biomed Eng 35:493–504CrossRefGoogle Scholar
  22. Sakakibara J, Nakagawa M, Yoshida M (2004) Stereo-PIV study of flow around a maneuvering fish. Exp Fluids 36:282–293CrossRefGoogle Scholar
  23. Yeung PK (2002) Lagrangian investigations of turbulence. Annu Rev Fluid Mech 34:115–142CrossRefMathSciNetGoogle Scholar
  24. Yeung PK, Pope SB (1988) An algorithm for tracking fluid particles in numerical simulations of homogeneous turbulence. J Comput Phys 79:373–416MATHCrossRefGoogle Scholar
  25. Yu SCM, Zhao JB (1999) Steady and pulsating flow characteristics in straight tubes with and without a lateral circular protrusion. Exp Fluids 26:505–512CrossRefGoogle Scholar
  26. de Zelicourt D, Pekkan K, Kitajima HD, Frakes DH, Yoganathan AP (2005) Single-step stereolithography of complex anatomical models for optical flow measurements. J Biomech Eng 127:205–207CrossRefGoogle Scholar
  27. Zhao W, Sawhney H (2002) Is super-resolution with optical flow feasible?” In: Proceedings: European conference on computer vision, vol 1Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • David H. Frakes
    • 1
    • 2
  • Kerem Pekkan
    • 3
  • Lakshmi P. Dasi
    • 4
  • Hiroumi D. Kitajima
    • 4
  • Diane de Zelicourt
    • 4
  • Hwa Liang Leo
    • 4
  • Josie Carberry
    • 4
  • Kartik Sundareswaran
    • 4
  • Helene Simon
    • 4
  • Ajit P. Yoganathan
    • 4
  1. 1.Harrington Department of BioengineeringArizona State UniversityTempeUSA
  2. 2.4-D Imaging, Inc.AtlantaUSA
  3. 3.Department of Biomedical EngineeringCarnegie Mellon UniversityPittsburghUSA
  4. 4.Wallace H. Coulter Department of Biomedical EngineeringGeorgia Institute of TechnologyAtlantaUSA

Personalised recommendations