Advertisement

Experiments in Fluids

, Volume 45, Issue 2, pp 203–222 | Cite as

A real-time model-based approach for the reconstruction of fluid flows induced by microorganisms

  • P. Kondratieva
  • J. Georgii
  • R. Westermann
  • H. Petermeier
  • W. Kowalczyk
  • A. Delgado
Research Article

Abstract

An experiment on living microorganisms is conducted to gain insight into their motion and fluid exchange characteristics. Biocompatible microscopic particle image velocimetry (PIV)-systems are used to capture images of seeded particles in the induced fluid flows. To enhance the abilities of these devices we present a model-based approach for the reconstruction of admissible flow fields from captured images. A priori knowledge of the physical model of the flow is used to iteratively refine a predicted flow field. A physics-based filter operation generates a velocity field that is consistent with the model of incompressible laminar flows described by the Navier–Stokes equations. Interactive steering of the reconstruction process is achieved by exploiting programmable graphics hardware as a co-processor for numerical computations. To validate our method, we estimate velocity vector fields from synthetic image pairs of flow scenarios for which ground truth velocity fields exist and real-world image sequences of the flow induced by sessile microorganisms.

Keywords

Particle Image Velocimetry Optical Flow Velocity Magnitude Reconstruction Process Interrogation Window 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors thank Dominique Heitz and Professor Etienne Mémin for providing the Lamb–Oseen vortex flow dataset. Support by the Deutsche Forschungsgemeinschaft (DFG) within the priority program “Bildgebende Messverfahren in der Strömungsmechanik” (http://www.spp1147.tu-berlin.de) is gratefully acknowledged.

References

  1. Blake JR (1982) Mechanics of ciliary transport. Cell Motil Cytoskeleton 2(S1):41–45CrossRefGoogle Scholar
  2. Blake JR (2001) Microbiological fluid mechanics: a tribute to Sir James Lighthill. Math Methods Appl Sci 24:1469–1483CrossRefMATHGoogle Scholar
  3. Blake JR, Otto SR, Blake DA (1998) Filter feeding, chaotic filtration and a blinking stokeslet. Theor Comput Fluid Dyn 10(1):23–36CrossRefMATHGoogle Scholar
  4. Bruhn A, Weickert J, Feddern C, Kohlberger T, Schnörr C (2005) Variational optical flow computation in real-time. IEEE Trans Image Process 14(5):608–615CrossRefMathSciNetGoogle Scholar
  5. Carlier J, Wieneke B (2005) Report 1 on production and diffusion of fluid mechanics images and data, fluid project deliverable 1.2. European Project “Fluid image analysis and description” (FLUID). http://www.fluid.irisa.fr/
  6. Corpetti T, Mémin E, Pérez P (2000) Estimating fluid optical flow. In: 15th International conference on pattern recognition, vol 3, pp 1045–1048Google Scholar
  7. Corpetti T, Heitz D, Arroyo G, Mémin E, Santa-Cruz A (2005) Fluid experimental flow estimation based on an optical-flow scheme. Exp Fluids 40(1):80–97CrossRefGoogle Scholar
  8. Gupta S, Prince J (1996) Stochastic models for div-curl optical flow methods. Signal Proc Lett 3(2):32–34CrossRefGoogle Scholar
  9. Hackbusch W (1994) Iterative solutions of large sparse systems of equations. Springer, New YorkGoogle Scholar
  10. Hartmann C, Özmutlu O, Petermeier H, Fried J, Delgado A (2007) Analysis of the flow field induced by the sessile peritrichous ciliate Opercularia asymmetrica. J Biomech 40(1):137–148CrossRefGoogle Scholar
  11. Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17:185–203CrossRefGoogle Scholar
  12. Kalmoun EM, Rüde U (2003) A variational multigrid for computing the optical flow. In: Vision, modeling, and visualization conference, pp 577–584Google Scholar
  13. Kowalczyk W, Zima BE, Delgado A (2007) A biological seeding particle approach for μ-PIV measurements of a fluid flow provoked by microorganisms. Exp Fluids 43(1):147–150CrossRefGoogle Scholar
  14. Krüger J, Westermann R (2003) Linear algebra operators for GPU implementation of numerical algorithms. ACM Trans Graph 22(3):908–916CrossRefGoogle Scholar
  15. Krüger J, Kiefer P, Kondratieva P, Westermann R (2005) A particle system for interactive visualization of 3D flows. IEEE Trans Vis Comput Graph 11(6):744–756CrossRefGoogle Scholar
  16. Liron N (1982) Ciliary fluid transport: theory and experiment. Cell Motil Cytoskeleton 2(S1):47–51CrossRefMathSciNetGoogle Scholar
  17. Liron N, Blake JR (1981) Existence of viscous eddies near boundaries. J Fluid Mech 107:109–129CrossRefMathSciNetMATHGoogle Scholar
  18. Mayer S (2000) Numerical simulation of flow fields and particle trajectories in ciliary suspension feeding. Bull Math Biol 62(6):1035–1059CrossRefGoogle Scholar
  19. Mémin E, Pérez P (1998) A multigrid approach for hierarchical motion estimation. In: International conference on computer vision, pp 933–938Google Scholar
  20. Modersitzki J (2004) Numerical methods for image registration. Oxford University Press, New YorkMATHGoogle Scholar
  21. Nakajima Y, Inomata H, Nogawa H, Sato Y, Tamura S, Okazaki K, Torii S (2003) Physics-based flow estimation of fluids. Pattern Recognit 36(5):1203–1212CrossRefGoogle Scholar
  22. Nobach H, Tropea C (2005) Improvements to PIV image analysis by recognizing the velocity gradients. Exp Fluids 39(3):614–622CrossRefGoogle Scholar
  23. Nobach H, Ouellette NT, Bodenschatz E, Tropea C (2005) Full-field correlation-based image processing for PIV. In: 6th International symposium on particle image velocimetryGoogle Scholar
  24. Otto SR, Yannacopoulos AN, Blake JR (2001) Transport and mixing in Stokes flow: the effect of chaotic dynamics on the blinking stokeslet. J Fluid Mech 430:1–26CrossRefMATHGoogle Scholar
  25. Owens JD, Luebke D, Govindaraju N, Harris M, Krüger J, Lefohn AE, Purcell TJ (2007) A survey of general-purpose computation on graphics hardware. In: Computer Graphics Forum, vol 26, pp 80–113Google Scholar
  26. Petermeier H, Kowalczyk W, Delgado A, Denz C, Holtmann F (2007) Detection of microorganismic flows by linear and nonlinear optical methods and automatic correction of erroneous image artefacts and moving boundaries in image generating methods by a neuronumerical hybrid implementing the Taylor’s hypothesis as a priori knowledge. Exp Fluids 42(4):611–623CrossRefGoogle Scholar
  27. Quenot GM, Pakleza JD, Kowalewski TA (1998) Particle image velocimetry with optical flow. Exp Fluids 25(3):177–189CrossRefGoogle Scholar
  28. Raffel M, Willert CE, Kompenhans J (2001) Particle image velocimetry: a practical guide, 2nd edn. Springer, HeidelbergGoogle Scholar
  29. Ruhnau P, Schnörr C (2007) Optical stokes flow estimation: an imaging-based control approach. Exp Fluids 42(1):61–78CrossRefGoogle Scholar
  30. Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids 38(1):21–32CrossRefGoogle Scholar
  31. Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13(1):R1–R19CrossRefGoogle Scholar
  32. Sládecek V (1981) Indicator value of the genus Opercularia (Ciliata). Hydrobiologia 79(3):229–232CrossRefGoogle Scholar
  33. Stam J (1999) Stable fluids. In: 26th annual conference on computer graphics and interactive techniques, pp 121–128Google Scholar
  34. Utz LRP (2003) Identification, life history, and ecology of peritrich ciliates as epibionts on calanoid copepods in the Chesapeake Bay. PhD thesis, University of MarylandGoogle Scholar
  35. Westerweel J (1993) Digital particle image velocimetry: theory and application. PhD thesis, Delft University of TechnologyGoogle Scholar
  36. Willert C, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10(4):181–193CrossRefGoogle Scholar
  37. Zaleski M, Claps C (2001) First record of some peritrichs ciliates for San Miguel del Monte pond (Buenos Aires, Argentina). Gayana (Concepc) 65(1):27–36Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • P. Kondratieva
    • 1
  • J. Georgii
    • 1
  • R. Westermann
    • 1
  • H. Petermeier
    • 2
  • W. Kowalczyk
    • 3
  • A. Delgado
    • 3
  1. 1.Department of Computer Graphics and VisualizationTechnische Universität MünchenGarching b. MunichGermany
  2. 2.Informations Technologie Weihenstephan (ITW)Technische Universität MünchenFreisingGermany
  3. 3.Lehrstuhl für Strömungsmechanik (LSTM)Friedrich-Alexander-Universität Erlangen-NürnbergErlangenGermany

Personalised recommendations