Experiments in Fluids

, Volume 45, Issue 1, pp 27–71

Main results of the third international PIV Challenge

  • M. Stanislas
  • K. Okamoto
  • C. J. Kähler
  • J. Westerweel
  • F. Scarano
Research Article

Abstract

This paper presents the main results of the third international PIV Challenge which took place in Pasadena (USA) on the 19th and 20th of September 2005. This workshop was linked to the PIV05 International Symposium held at the same place the same week. The present contribution states the objectives of the challenge, describes the test cases and the algorithms used by the participants, and presents the main results together with some discussion and conclusions on the accuracy and robustness of various PIV and PTV algorithms. As the entire amount of results obtained cannot be detailed, this contribution is written as a guide for the use of the full database of images and results which is available at http://www.pivChallenge.org.

References

  1. Astarita T (2006) Analysis of interpolation schemes for image deformation methods in PIV: effect of noise on the accuracy and spatial resolution. Exp Fluids 40:977–987CrossRefGoogle Scholar
  2. Astarita T, Cardone G (2005) Analysis of interpolation schemes for image deformation methods in PIV. Exp Fluids 38:233–243CrossRefGoogle Scholar
  3. Corpetti T, Ménin E, Pérez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intel24(3):365–380CrossRefGoogle Scholar
  4. Corpetti T, Heitz D, Arroyo G, Ménin E, Santa-Cruz A (2006) Fluid experimental flow estimation based on an optical flow scheme. Exp Fluids 40:80–97CrossRefGoogle Scholar
  5. David L, Dupré JC, Valle V, Robin E, Koudeir M, Brochard J, Jarny S, Calluaud D (2005) Comparison of three techniques to localize and to measure 3D surfaces. In: 6th International symposium on particle image velocimetry, Pasadena (USA)Google Scholar
  6. Di Florio D, Di Felice F, Romano (2002) G. P. Windowing, re-shaping and re-orientation interrogation windows in particle image velocimetry for the investigation of shear flows. Meas Sci Technol 13:953–962CrossRefGoogle Scholar
  7. Doh DH, Kim DH, Cho KR, Cho YB, Saga T, Kobayashi SK (2002) Development of genetic algorithm based 3D-PTV technique. J Vis 5(3):243–254CrossRefGoogle Scholar
  8. van Doorne CWH, Westerweel J (2007) Measurement of laminar, transitional and turbulent pipe flow using stereoscopic-PIV. Exp Fluids 42:259–279CrossRefGoogle Scholar
  9. Draad AA, Nieuwstadt FTM (1998) The Earth’s rotation and laminar pipe flow. J Fluid Mech 361:297–308CrossRefMathSciNetMATHGoogle Scholar
  10. Hain R, Kähler CJ (2007) Fundamentals of multiframe particle image velocimetry (PIV). Exp Fluids 42:575–587CrossRefGoogle Scholar
  11. Hain R, Kähler CJ, Tropea C (2007) Comparison of CCD, CMOS and intensified cameras. Exp Fluids 42:403–411CrossRefGoogle Scholar
  12. Horn B, Schunck B (1981) Determining optical flow. Artif Intel 17:185–203CrossRefGoogle Scholar
  13. Kähler CJ, Kompenhans J (2000) Fundamentals of multiple plane stereo particle image velocimetry. Exp Fluids 29:S70–S77CrossRefGoogle Scholar
  14. Kähler CJ, Sammler B, Kompenhans J (2002) Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics. Exp Fluids 33:736–742Google Scholar
  15. Keane RD, Adrian RJ (1992) Theory of cross-correlation analysis of PIV images. Appl Sci Res 49:191–215CrossRefGoogle Scholar
  16. Laval J-P, McWilliams J-C, Dubrulle B (2003) Forced stratified turbulence: successive transitions with Reynolds number. Phys Rev E 68:036308CrossRefGoogle Scholar
  17. Lecordier B, Trinité M (2004) Advanced PIV algorithms with image distortion for velocity measurements in turbulent flows. In: Stanislas M, Westerweel J, Kompenhans J (eds) Proceedings of the EUROPIV 2 workshop held in Zaragoza, Spain, March 31–April 1, 2003. Springer, Heidelberg, ISBN 3-540-21423-2Google Scholar
  18. Lecordier B, Westerweel J (2004) The EUROPIV synthetic image generator. In: Stanislas M, Westerweel J, Kompenhans J (eds) Particle image velocimetry: recent improvements. Springer, HeidelbergGoogle Scholar
  19. Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. From Proceedings of imaging understanding workshop, pp 121–130Google Scholar
  20. Lugni C, Brocchini M, Faltinsen OM (2006) Wave impact loads: the role of flip-through. Phys Fluids 18(1) (in press)Google Scholar
  21. Marrazzo M, De Gregorio F, Romano GP (2004) The use of a deformable weight function and of advanced validation procedures in PIV. In: 12th International symposium on applications of laser techniques to fluid mechanics, LisbonGoogle Scholar
  22. Marxen O, Rist U, Wagner S (2004) The effect of spanwise-modulated disturbances on transition in a 2-D separated boundary layer. AIAA J 42:937–944CrossRefGoogle Scholar
  23. Miozzi M (2004) Particle Image Velocimetry using feature tracking and Delaunay tessellation. In: Proceedings of the 12th int. symp. on appl. laser tech. to fluid mech., LisbonGoogle Scholar
  24. Miozzi M (2005) Direct measurement of velocity gradients in digital images and vorticity evaluation. In: 6th International symposium on particle image velocimetry, Pasadena, September 21–23Google Scholar
  25. Nogueira J, Lecuona A, Rodriguez PA (1997) Data validation, false vectors correction and derived magnitudes calculation on PIV data. Meas Sci Technol 8:1493–1501CrossRefGoogle Scholar
  26. Ohmi K, Hang Yu L (2000) Particle tracking velocity with new algorithms. Meas Sci Technol 11:603–616CrossRefGoogle Scholar
  27. Okamoto K, Nishio S, Kobayashi T, Saga T, Takehara K (2000a) Evaluation of the 3D-PIV standard images (PIV-STD Project). J Vis 3–2:115–124Google Scholar
  28. Okamoto K, Nishio S, Saga T, Kobayashi T (2000b) Standard images for particle-image velocimetry. Meas Sci Technol 11:685–691CrossRefGoogle Scholar
  29. Quénot GM, Pakleza J, Kowalewski TA (1998) Particle image velocimetry with optical flow. Exp Fluids 25–3:177–189Google Scholar
  30. Raffel M, Willert C, Wereley S, Kompenhans J (2007) Particle image velocimetry—a practical guide, 2nd edn. Springer, HeidelbergGoogle Scholar
  31. Scarano F (2002) Iterative image deformation methods in PIV. Meas Sci Technol 13:R1–R19CrossRefGoogle Scholar
  32. Scarano F, Riethmuller M (2000) Advances in Iterative multigrid PIV image processing. Exp Fluids Suppl 29:S51–S60CrossRefGoogle Scholar
  33. Scarano F, David L, Bsibsi M, Calluaud D (2005) S-PIV comparative assessment: image dewarping+misalignment correction and pinhole+geometric back projection. Exp Fluids 39:257–266CrossRefGoogle Scholar
  34. Schrijer FFJ, Scarano F (2006) On the stabilization and spatial resolution of iterative PIV interrogation. 13th International Symposium on Application of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 26–29 June, 2006Google Scholar
  35. Soloff SM, Adrian RJ, Liu Z-C (1997) Distortion compensation for generalized stereoscopic particle image velocimetry. Meas Sci Technol 8:1441–1454CrossRefGoogle Scholar
  36. Stanislas M, Okamoto K, Kaehler C (2003) Main results of the first international PIV Challenge. Meas Sci Technol 14:R63–R89CrossRefGoogle Scholar
  37. Stanislas M, Okamoto K, Kaehler CJ, Westerweel J (2005) Main results of the second international PIV Challenge. Exp Fluids 39:170–191CrossRefGoogle Scholar
  38. Stitou A, Riethmuller ML (2001) Extension of PIV to Super Resolution using PTV. Meas Sci Technol 12(9):1398–1403CrossRefGoogle Scholar
  39. Wereley ST, Gui LC (2002) Advanced algorithms for microscale Particle Image Velocimetry. AIAA J 40(6):1047–1055CrossRefGoogle Scholar
  40. Wernet M (2005) Symmetric phase only filtering: a new paradigm for DPIV data processing. Meas Sci Technol 16:601–618CrossRefGoogle Scholar
  41. Westerweel J, Scarano F (2005) A universal detection criterion for the median test. Exp Fluids 39:1096–1100CrossRefGoogle Scholar
  42. Willert C (2004) Application potential of advanced PIV algorithms for industrial applications. Pivnet/ERCOFTAC workshop on Particle Image Velocimetry, Lisbon, July 9–10Google Scholar
  43. Willert C (2006) Assessment of camera models for use in planar velocimetry calibration. Exp Fluids 41:135–143CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • M. Stanislas
    • 1
  • K. Okamoto
    • 2
  • C. J. Kähler
    • 3
  • J. Westerweel
    • 4
  • F. Scarano
    • 5
  1. 1.Laboratoire de Mécanique de LilleUMR 8107Villeneuve d’Ascq CedexFrance
  2. 2.Department of Quantum Engineering Systems ScienceThe University of TokyoTokyoJapan
  3. 3.Institut für StrömungsmechanikBraunschweigGermany
  4. 4.Laboratory for Aero and HydrodynamicsDelft University of TechnologyDelftThe Netherlands
  5. 5.Delft University of TechnologyDelftThe Netherlands

Personalised recommendations