Advertisement

Experiments in Fluids

, Volume 44, Issue 5, pp 691–703 | Cite as

Scale effects in subaerial landslide generated impulse waves

  • Valentin Heller
  • Willi H. Hager
  • Hans-Erwin Minor
Research Article

Abstract

Hydraulic scale modelling involves scale effects. The limiting criteria for scale models of subaerial landslide generated impulse waves including solid, air, and water are discussed both based on a literature review and based on detailed two-dimensional experimentation. Seven scale series based on the Froude similitude were conducted involving the intermediate-water wave spectrum. Scale effects were primarily attributed to the impact crater formation, the air entrainment and detrainment, and the turbulent boundary layer as a function of surface tension and fluid viscosity. These effects reduce the relative wave amplitude and the wave attenuation as compared with reference experiments. Wave amplitude attenuation was found to be more than 70 times larger than predicted with the standard wave theory. Limitations for plane impulse wave generation on the basis of the present research are given by which scale effects can be avoided.

Keywords

Solitary Wave Wave Height Scale Effect Impulse Wave Wave Celerity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

List of symbols

a

wave amplitude (L)

ax′

wave amplitude at distance x′ from CWG1 (L)

A

relative wave amplitude (−)

A1d

relative amplitude difference at CWG1 (%)

A1dtot

total relative amplitude difference (%)

A1dZ

relative amplitude difference according to Zweifel et al. (2006) (%)

A1ref

relative reference amplitude at CWG1 (−)

b

channel width (L)

c

wave celerity (LT−1)

C

Cauchy number (−)

dg

grain diameter (L)

D

relative slide density (−)

Dg

relative grain diameter (−)

F

slide Froude number (−)

g

gravitational acceleration (LT−2)

h

still water depth (L)

H

wave height (L)

j

number of governing dimensionless quantities (−)

L

wavelength (L)

m

number of governing independent parameters on impulse wave generation (–)

ms

slide mass (M)

M

relative slide mass (−)

n

bulk slide porosity (%)

o

number of fundamental units (−)

pA

box acceleration air pressure (ML−1T−2)

R

Reynolds number (−)

s

slide thickness (L)

S

relative slide thickness (−)

t

time (T)

T

wave period (T)

Tr

relative time (−)

Te

water temperature (°C)

V

relative slide volume (−)

Vs

slide impact velocity (LT−1)

\( -\!\!\!\!V_{s} \)

slide volume identical to box volume (L3)

W

Weber number (−)

x

streamwise coordinate (L)

x′

distance from CWG1 (L)

X

relative streamwise distance (−)

YP

relative primary wave height (−)

z

vertical coordinate (L)

α

slide impact angle (°)

β

average wave amplitude attenuation (%)

δ

dynamic bed friction angle (°)

Δ

time increment (T)

Δx′

spacing between CWG1 and CWG7 (L)

ΔX

relative spacing between CWG1 and CWG7 (−)

ϕ

internal friction angle (°)

η

water surface displacement (L)

κw

water compressibility (LT2M−1)

νw

kinematic viscosity for water (L2T−1)

ρ

density (ML−3)

σw

surface tension for water (MT−2)

Subscripts

A

acceleration

d

difference

g

grain

K

Keulegan

L

limit

M

maximum

P

primary

r

relative

ref

reference

s

slide

tot

total

w

water

Z

Zweifel

1

at CWG1

3

at CWG3

5

at CWG5

7

at CWG7

Notes

Acknowledgments

The first author was supported from the Swiss National Science Foundation, Grant 200020-103480/1.

References

  1. Abelson HI (1970) Pressure measurements in the water-entry cavity. J Fluid Mech 44(1):129–144CrossRefMathSciNetGoogle Scholar
  2. Biesel F (1949) Calcul de l’amortissement d’une houle dans un liquide visqueux de profondeur finite (in French). La Houille Blanche 4(5):630–634 Google Scholar
  3. Buckingham E (1914) On physically similar systems. Phys Rev 4:354–376CrossRefGoogle Scholar
  4. De St Q Isaacson M (1976) The viscous damping of cnoidal waves. J Fluid Mech 75(3):449–457CrossRefzbMATHGoogle Scholar
  5. Dean RG, Dalrymple RA (2004) Water wave mechanics for engineers and scientists: advanced series on ocean engineering, vol 2. World Scientific, SingaporeGoogle Scholar
  6. Fritz HM (2002) Initial phase of landslide generated impulse waves. In: Minor H-E (ed) VAW-Mitteilung, vol 178. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, ZurichGoogle Scholar
  7. Fritz HM, Moser P (2003) Pneumatic landslide generator. Int J Fluid Power 4(1):49–57Google Scholar
  8. Fritz HM, Hager WH, Minor H-E (2001) Lituya bay case: rockslide impact and wave run-up. Sci Tsunami Hazards 19(1):3–22Google Scholar
  9. Fritz HM, Hager WH, Minor H-E (2003) Landslide generated impulse waves. Exp Fluids 35:505–532 doi: 10.1007/s00348-003-0659-0 CrossRefGoogle Scholar
  10. Führböter A (1970) Air entrainment and energy dissipation in breakers. In: Proceedings of the 12th coastal engineering conference, Washington DC, vol 1. ASCE, New York, pp 391–398Google Scholar
  11. Hager WH, Bremen R (1989) Classical hydraulic jump: sequent depths. J Hydraul Res 27(5):565–585CrossRefGoogle Scholar
  12. Hampton MA, Lee HJ, Locat J (1996) Submarine landslides. Rev Geophys 34(1):33–59CrossRefGoogle Scholar
  13. Heinrich P (1992) Nonlinear water waves generated by submarine and aerial landslides. J Waterw Port Coast Ocean Eng 118(3):249–266CrossRefGoogle Scholar
  14. Heller V (2007a) Landslide generated impulse waves: prediction of near field characteristics. Dissertation 17531, ETH, Zurich (submitted)Google Scholar
  15. Heller V (2007b) Massstabseffekte im hydraulischen Modell (in German). Wasser Energie Luft 99(2):153–159MathSciNetGoogle Scholar
  16. Huber A (1976) Grenzen der Froude’schen Ähnlichkeit bei der Nachbildung flacher Wasserwellen im hydraulischen Modell (in German). In: Vischer D (ed) VAW-Mitteilung, vol 21. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, ZurichGoogle Scholar
  17. Huber A (1980) Schwallwellen in Seen als Folge von Bergstürzen (in German). In: Vischer D (ed) VAW-Mitteilung, vol 47. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH, ZurichGoogle Scholar
  18. Hudson RY, Herrmann FA, Sager RA, Whalin RW, Keulegan GH, Chatham CE, Hales LZ (1979) Coastal hydraulic models. Special report no 5, US Army Engineer Waterways Experiment Station, Vicksburg, MississippiGoogle Scholar
  19. Hughes S (1993) Physical models and laboratory techniques in coastal engineering. Advanced series on ocean engineering, vol 7. World Scientific, SingaporeGoogle Scholar
  20. Ippen AT, Kulin G (1957) The effects of boundary resistance on the solitary wave. La Houille Blanche 12(3):390–407Google Scholar
  21. Iwasa Y (1959) Attenuation of solitary waves on a smooth bed. Trans ASCE 124:193–206Google Scholar
  22. Kamphuis JW, Bowering RJ (1972) Impulse waves generated by landslides. In: Proceedings of 12th Coastal Engineering Conference, Washington DC, vol 1. ASCE, New York, pp 575–588Google Scholar
  23. Keulegan GH (1950) Wave motion. In: Rouse H (ed) Engineering hydraulics. Wiley, New YorkGoogle Scholar
  24. Le Méhauté B (1976) An introduction to hydrodynamics and water waves. Springer, New YorkzbMATHGoogle Scholar
  25. Le Méhauté B (1990) Similitude. In: Le Méhauté B, Hanes DM (eds) The sea ocean engineering science, vol 9B. Wiley, New York, pp 955–980Google Scholar
  26. Miles JW (1976) Damping of weakly nonlinear shallow-water waves. J Fluid Mech 76(2):251–257CrossRefMathSciNetzbMATHGoogle Scholar
  27. Miller DJ (1960) Giant waves in Lituya Bay, Alaska. Geological survey, Professional paper 354-C. US Government Printing Office, Washington DCGoogle Scholar
  28. Miller RL (1972) The role of surface tension in breaking waves. In: Proceedings of the 13th coastal engineering conference, Vancouver BC, vol 1. ASCE, New York, pp 433–449Google Scholar
  29. Noda E (1970) Water waves generated by landslides. J Waterw Harb Coast Eng Div ASCE 96(WW4):835–855Google Scholar
  30. Panizzo A (2004) Physical and numerical modelling of subaerial landslide generated waves. Dissertation, Università degli studi, L’Aquila, ItalyGoogle Scholar
  31. Panizzo A, De Girolamo P (2005) Forecasting impulse waves generated by subaerial landslides. J Geophys Res 110(C12025):1–23 doi:  10.1029/2004JC002778 Google Scholar
  32. Panizzo A, Bellotti G, De Girolamo P (2002) Application of wavelet transform analysis to landslide generated waves. Coast Eng 44:321–338CrossRefGoogle Scholar
  33. Pugh FJ, Wilson KC (1999) Velocity and concentration distributions in sheet flow above plane beds. J Hydraul Eng 125(2):117–125CrossRefGoogle Scholar
  34. Skladnev MF, Popov IY (1969) Studies of wave loads on concrete slope protections of earth dams. In: Research on wave action, vol 2(7). Delft, The Netherlands, pp 1–11Google Scholar
  35. Stive MJF (1985) A scale comparison of waves breaking on a beach. Coast Eng 9:151–158CrossRefGoogle Scholar
  36. Treloar PD, Brebner A (1970) Energy losses under wave action. In: Proceedings of the 12th coastal engineering conference, Washington DC, vol 1. ASCE, New York, pp 257–267Google Scholar
  37. Walder JS, Watts P, Sorensen OE, Janssen K (2003) Tsunami generated by subaerial mass flows. J Geophys Res 108(B5):2.1–2.19CrossRefGoogle Scholar
  38. Zweifel A, Hager WH, Minor H-E (2006) Plane impulse waves in reservoirs. J Waterway Port Coast Ocean Eng 132(5):358–368CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Valentin Heller
    • 1
  • Willi H. Hager
    • 1
  • Hans-Erwin Minor
    • 1
  1. 1.Laboratory of Hydraulics, Hydrology and Glaciology (VAW)ETH ZurichZurichSwitzerland

Personalised recommendations