Experiments in Fluids

, Volume 44, Issue 4, pp 597–608 | Cite as

Quantifying the nonlinear mode competition in the flow over an open cavity at medium Reynolds number

  • L. R. Pastur
  • F. Lusseyran
  • T. M. Faure
  • Y. Fraigneau
  • R. Pethieu
  • P. Debesse
Research Article

Abstract

Our purpose is to quantify the rate of intermittency of nonlinearly competing modes, in a dominantly mode-switching scenario. What is the rate of presence of each mode? Can they simultaneously appear in, or disappear from the signal? The study is done in the context of open flows, exhibiting self-sustained oscillations, where air is here flowing over an open cavity. Reynolds numbers are of the order of 14,000. Velocity measurements downstream of the cavity are based on a laser Doppler velocimetry technique. We propose two methods to estimate the rate of presence of each mode: one based on a complex demodulation technique, the other on the distribution of the state vectors in the phase portrait of the signal.

References

  1. Broomhead D, King G (1986) Extracting qualitative dynamics from experimental data. Physica D 20:217–236MATHCrossRefMathSciNetGoogle Scholar
  2. Faure TM, Debesse P, Lusseyran F, Gougat P (2005) Structures tourbillonnaires engendrées par l’interaction entre une couche limite laminaire et une cavité. In: 11ème Colloque de Visualization et de Traitement d’Images en Mécanique des Fluides, IUTAM, Lyon, France, pp 6–9Google Scholar
  3. Faure T, Adrianos P, Lusseyran F, Pastur L (2007) Visualizations of the flow inside an open cavity at medium range reynolds numbers. Exp Fluids 42:169–184CrossRefGoogle Scholar
  4. Gadoin E, Quéré PL, Daube O (2001) A general methodology for investigating flow instability in complex geometries: application to natural convection in enclosures. Int J Numer Methods Fluids 37:175–208MATHCrossRefGoogle Scholar
  5. Gouesbet G, Letellier C (1994) Global vector-field reconstruction by using a multivariate polynomial l 2 approximation on nets. Phys Rev E 49:4955–4972CrossRefMathSciNetGoogle Scholar
  6. Grassberger P, Procaccia I (1983) Characterization of strange attractors. Phys Rev Lett 50:346–349CrossRefMathSciNetGoogle Scholar
  7. Kegerise M, Spina E, Garg S, Cattafesta L (2004) Mode-switching and nonlinear effects in compressible flow over a cavity. Phys Fluids 16:678–687CrossRefGoogle Scholar
  8. Le Quéré P, Masson R, Perrot P (1992) A Chebyshev collocation algorithm for 2D non-Boussinesq convection. J Comput Phys 103(2):320–335MATHCrossRefGoogle Scholar
  9. Leonard BP (1979) A stable and accurate convective modelling procedure based on quadratic upstream interpolation. Comput Methods Appl Mech Eng 19:59–98MATHCrossRefGoogle Scholar
  10. Podvin B, Fraigneau Y, Lusseyran F, Gougat P (2006) A reconstruction method for the flow past an open cavity. J Fluids Eng 128:531–540. doi:10.1115/1.2175159 Google Scholar
  11. Rockwell D (1983) Oscillations of impinging shear layers. AIAA J 21(5):645–664CrossRefGoogle Scholar
  12. Rockwell D, Naudascher E (1979) Self-sustained oscillations of impinging free shear layers. Annu Rev Fluid Mech 11:67–94CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • L. R. Pastur
    • 1
    • 2
  • F. Lusseyran
    • 1
  • T. M. Faure
    • 1
    • 3
  • Y. Fraigneau
    • 1
  • R. Pethieu
    • 1
    • 2
  • P. Debesse
    • 1
    • 3
  1. 1.LIMSI-CNRSOrsay CedexFrance
  2. 2.Université Paris Sud XIOrsay CedexFrance
  3. 3.Université Pierre et Marie CurieParis Cedex 05France

Personalised recommendations