Experiments in Fluids

, Volume 44, Issue 4, pp 519–528 | Cite as

Experimental observation using particle image velocimetry of inertial waves in a rotating fluid

  • Laura Messio
  • Cyprien Morize
  • Marc Rabaud
  • Frédéric MoisyEmail author
Research Article


Inertial waves generated by a small oscillating disk in a rotating water filled cylinder are observed by means of a corotating particle image velocimetry system. The wave takes place in a stationary conical wavepacket, whose angle aperture depends on the oscillation frequency. Direct visualisation of the velocity and vorticity fields in a plane normal to the rotation axis are presented. The characteristic wavelength is found to be approximately equal to the disk diameter. The classical dispersion relation for plane waves is verified from the radial location of the wavepacket, and from the ellipticity of the projected velocity diagram.


Vorticity Dispersion Relation Particle Image Velocimetry Fluid Particle Particle Image Velocimetry Measurement 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors wish to acknowledge A. Aubertin, C. Borget, G. Chauvin, A. Minière and R. Pidoux for experimental help. They also thank J.P. Hulin for fruitful discussions, and G. Tan for help with the manuscript. This work was supported by the ANR grant no. 06-BLAN-0363-01 “HiSpeedPIV”.

Supplementary material

Supplementary material (AVI 4.71 MB)


  1. Greenspan H (1968) The theory of rotating fluids. Cambridge University Press, LondonGoogle Scholar
  2. Pedlosky J (1987) Geophysical fluid dynamics. Springer, HeidelbergGoogle Scholar
  3. Cushman-Roisin B (1994) Introduction to geophysical fluid dynamics. Prentice-Hall, Englewood CliffsGoogle Scholar
  4. Lighthill J (1978) Waves in fluids. Cambridge University Press, LondonGoogle Scholar
  5. Phillips OM (1963) Energy transfer in rotating fluids by reflection of inertial waves. Phys Fluids 6(4):513zbMATHCrossRefMathSciNetGoogle Scholar
  6. Aldridge KD, Lumb L (1987) Inertial waves identified in the earth’s fluid core. Nature 325:421423CrossRefGoogle Scholar
  7. Oser H (1958) Experimentelle Untersuchung über harmonische Schwingungen in rotierenden Flüssigkeiten. Z Angew Meth Mech 38(9/10):386–391zbMATHCrossRefGoogle Scholar
  8. Fultz D (1959) A note on overstability and the elastoid-inertia oscillations of Kelvin, Soldberg, and Bjerknes. J Meteorol 16:199–207CrossRefGoogle Scholar
  9. McEwan AD (1970) Inertial oscillations in a rotating fluid cylinder. J Fluid Mech 40:603–639CrossRefGoogle Scholar
  10. Ito T, Suematsu Y, Hayase T, Nakahama T (1984) Experiments on the elastoid-inertia oscillations of a rigidly rotating fluid in a cylindrical vessel. Bull JSME 27(225):458–467Google Scholar
  11. Manasseh R (1996) Nonlinear behaviour of contained inertia waves. J Fluid Mech 315:151–173CrossRefGoogle Scholar
  12. Duguet Y (2006) Oscillatory jets and instabilities in a rotating cylinder. Phys Fluids 18:104104CrossRefMathSciNetGoogle Scholar
  13. Beardsley RC (1970) An experimental study of inertial waves in a closed cone. Stud Appl Math XLIX(2):187–196Google Scholar
  14. Malkus WVR (1968) Precession of the earth as the cause of geomagnetism. Science 160:259264CrossRefGoogle Scholar
  15. Maas LRM (2001) Wave focusing and ensuing mean flow due to symmetry breaking in rotating fluids. J Fluid Mech 437:13–28zbMATHCrossRefGoogle Scholar
  16. Manders AMM, Maas LRM (2003) Observations of inertial waves in a rectangular basin with one sloping boundary. J Fluid Mech 493:59–88zbMATHCrossRefMathSciNetGoogle Scholar
  17. Godeferd FS, Lollini L (1999) Direct numerical simulations of turbulence with confinement and rotation. J Fluid Mech 393:257–308zbMATHCrossRefGoogle Scholar
  18. Morize C, Moisy F, Rabaud M (2005) Decaying grid-generated turbulence in a rotating tank. Phys Fluids 17:095105CrossRefGoogle Scholar
  19. Tao L, Thiagarayan K (2003) Low KC flow regimes of oscillating sharg edges. I. Vortex shedding observation. Appl Ocean Res 22:281–294CrossRefGoogle Scholar
  20. Kistovich Yu V, Chashechkin Yu D (2000) Mass transport and the force of a beam of two-dimensional periodic internal waves. J Appl Math Mech 65(2):237–242CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Laura Messio
    • 1
    • 2
  • Cyprien Morize
    • 1
    • 2
  • Marc Rabaud
    • 1
    • 2
  • Frédéric Moisy
    • 1
    • 2
    Email author
  1. 1.Univ Paris-Sud; Univ Pierre et Marie Curie, CNRSOrsayFrance
  2. 2.Fluides, Automatique et Systèmes Thermiques (FAST)OrsayFrance

Personalised recommendations