Advertisement

Experiments in Fluids

, Volume 43, Issue 4, pp 595–601 | Cite as

Rainbow refractrometry on particles with radial refractive index gradients

  • Sawitree Saengkaew
  • Tawatchai Charinpanitkul
  • Hathaichanok Vanisri
  • Wiwut Tanthapanichakoon
  • Yves Biscos
  • Nicolas Garcia
  • Gérard Lavergne
  • Loïc Mees
  • Gérard Gouesbet
  • Gérard Grehan
Research Article

Abstract

The rainbow refractrometry, under its different configurations (classical and global), is an attractive technique to extract information from droplets in evaporation such as diameter and temperature. Recently a new processing strategy has been developed which increases dramatically the size and refractive index measurements accuracy for homogeneous droplets. Nevertheless, for mono component as well as for multicomponent droplets, the presence of temperature and/or of concentration gradients induce the presence of a gradient of refractive index which affects the interpretation of the recorded signals. In this publication, the effect of radial gradient on rainbow measurements with a high accuracy never reached previously is quantified.

Keywords

Refractive Index Radial Gradient Homogeneous Particle Ripple Structure Equivalent Particle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

This work is partially supported by the European Community programs Interreg III “the intelligent engine II” and the “MUSCLES G4RD-CT-2002-00644” program. Miss Sawitree Saengkaew is partially supported by the French Ministère délégué à la Recherche et aux Nouvelles Technologies in the framework of “co-tutelle de thèse” and by the Thaï Government by a Golden Jubilee Grant from the Thaï Research Fund.

References

  1. Aden AL, Kerker M (1951) Scattering of electromagnetic waves from two concentric spheres. J Appl Phys 22:1242–1246MATHCrossRefMathSciNetGoogle Scholar
  2. Anders K, Roth N, Frohn A (1996) Influence of refractive index gradients within droplets on rainbow position and implications for rainbow refractometry. Part Part Syst Charact 13:125–129CrossRefGoogle Scholar
  3. Atthasit A (2003) Etude experimentale des phenoménes d’interaction dans des jets diphasiques denses au moyen de jets rectilignes monodispersés, Thèse de ENSAE, Toulouse (France)Google Scholar
  4. Bhandari R (1985) Scattering coefficients for a multilayered sphere: analytic expressions and algorithms. Appl Opt 24:1960–1967Google Scholar
  5. Brockman CL, Alexopoulos NG (1977) Geometrical optics of inhomogeneous particles: glory ray and the rainbow revisited. Appl Opt 16(1):166–174Google Scholar
  6. Damaschke N (2003) Light scattering theories and their use for single particle characterization. Ph.D., Technische Universitat DarmstadtGoogle Scholar
  7. Doué N (2002) Modélisation de l’évaporation de gouttes multicomposants. DEA report at SUPAERO, Toulouse (France)Google Scholar
  8. Han X, Ren KF, Wu ZS, Corbin F, Gouesbet G, Gréhan G (1998) Characterization of initial disturbances in liquid jet by rainbow sizing. Appl Opt 37:8498–8503Google Scholar
  9. Johnson BR (1996) Light scattering by a multilayer sphere. Appl Opt 35(18):3286–3296Google Scholar
  10. Kai L, Massoli P (1994) Scattering of electromagnetic-plane waves by radially inhomogeneous spheres: a finely stratified sphere model. Appl Opt 33(3):501–511CrossRefGoogle Scholar
  11. Kai L, Massoli P, D’Alessio A (1994) Some far field scattering characteristics of radially inhomogeneous particles. Part Part Syst Charact 11(5):385–390CrossRefGoogle Scholar
  12. Mackowski DW, Altenkirch RA, Menguc MP (1990) Internal absorption cross sections in a stratified sphere. Appl Opt 29(10):1551–1559Google Scholar
  13. Massoli P (1998) Rainbow refractometry applied to radially inhomogeneous spheres: the critical case of evaporating droplets. Appl Opt 37:3227–3234CrossRefGoogle Scholar
  14. Min SL, Gomez A (1996) High-resolution size measurement of single spherical particles with a fast Fourier transform of the angular scattering intensity. Appl Opt 35:4919–4926Google Scholar
  15. Nussenzveig HM (1969) High-frequency scattering by a transparent sphere. I Direct reflection and transmission, II Theory of the rainbow and the Glory. J Math Phys 10:82–124, 125–176Google Scholar
  16. Perelman AY (1996) Scattering by particles with radially variable refractive indices. Appl Opt 35(27):5452–5460Google Scholar
  17. Saengkaew S (2005) Study of spray heat up: on the development of global rainbow techniques. Ph.D., Rouen UniversityGoogle Scholar
  18. Saengkaew S, Biscos Y, Laurent C, Charinpanitkul T, Vanisri H, Lavergne G, Gouesbet G, Méès L, Gréhan G (2005) Processing of rainbow signals from individual droplets. ICLASS 05, Orléans, pp 97–102Google Scholar
  19. Saengkaew S, Charinpanitkul T, Vanisri H, Tanthapanichakon W, Gouesbet G, Méès L, Gréhan G (2006) Rainbow refractometry: on the validity domain of Airy’s and Nussenzveig’s theories. Opt Commun 259:7–13CrossRefGoogle Scholar
  20. Schneider M, Hirleman DE (1994) Influence of internal refractive index gradients on size measurements of spherically symmetric particles by phase Doppler anemometry. Appl Opt 33:2379–2388Google Scholar
  21. Toon OB, Ackerman TP (1981) Algorithms for the calculation of scattering by stratified spheres. Appl Opt 20:3657–3660Google Scholar
  22. Virepinte JF (1999) Etude du comportement dynamique et thermique de gouttes en regime d’interaction dans le cas de jets rectilignes. Thèse de ENSAE, Toulouse (France)Google Scholar
  23. Wu ZS, Guo LX, Ren KF, Gouesbet G, Gréhan G (1997) Improved algorithms for electromagnetic scattering of planes wave and shaped beams by multilayered spheres. Appl Opt 36:5188–5198Google Scholar
  24. Wu ZS, Wang YP (1997) Electromagnetic scattering for multilayered sphere: recursive algorithms. Radio Sci 26:1393–1401Google Scholar
  25. Yang W (2003) Improved recursive algorithm for light scattering by a multilayered sphere. Appl Opt 42(9):1710–1720CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Sawitree Saengkaew
    • 1
    • 2
  • Tawatchai Charinpanitkul
    • 2
  • Hathaichanok Vanisri
    • 2
  • Wiwut Tanthapanichakoon
    • 2
  • Yves Biscos
    • 3
  • Nicolas Garcia
    • 3
  • Gérard Lavergne
    • 3
  • Loïc Mees
    • 1
  • Gérard Gouesbet
    • 1
  • Gérard Grehan
    • 1
  1. 1.UMR 6614/CORIACNRS/Université et INSA de RouenSaint Etienne du Rouvray CEDEXFrance
  2. 2.Center of Excellence in Particle Technology, Faculty of EngineeringChulalongkorn UniversityBangkokThailand
  3. 3.ONERA/DMAEToulouseFrance

Personalised recommendations