Experiments in Fluids

, Volume 43, Issue 4, pp 525–533 | Cite as

Quantum nanospheres for sub-micron particle image velocimetry

  • Patrick E. Freudenthal
  • Matt Pommer
  • Carl D. Meinhart
  • Brian D. Piorek
Research Article


Quantum Nanospheres™ (QNs) have been developed as a new type of flow-tracing particle for micron resolution particle image velocimetry (PIV). The 70 nm diameter QNs were created by conjugating quantum dots to polystyrene beads. The fluorescent QNs have a large Stokes’ shift and are impervious to photobleaching. The use of QNs as flow-tracing particles for micro-PIV was demonstrated by measuring fluid motion in a 30 × 300 μm channel. Using an interrogation region of 1 × 1,024 pixels and ensemble averaging 1,800 image pairs, the physical volume of the interrogation region was 117 μm × 117 μm × 2 μm.


Brownian Motion Particle Image Velocimetry Particle Image Velocimetry Measurement Interrogation Region Particle Image Velocimetry Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Particle image velocimetry


Quantum dot


Quantum nanosphere


Cadmium selenide


Zinc sulfide


Neodymium-doped yttrium aluminum garnet


Polystyrene bead


Scanning electron microscope



This work has been supported by the Institute for Collaborative Biotechnologies through grant DAAD19-03-D-0004 from the U.S. Army; by AFOSR grants FA9550-04-C-0114 & FA9950-04-0106; and by NSF:NIRT CTS-0404444. We would like to thank Ms Tanja Siegmann, of the University of Bremen, who conducted the initial investigation into the use of QDs as flow-tracing particles. The experiments conducted in this research comply with the current laws of the United States of America, where they were performed.


  1. Adrian R (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304CrossRefGoogle Scholar
  2. Dabboursi BO, Rodriquez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475CrossRefGoogle Scholar
  3. Delnoij E, Westerweel J, Deen NG, Kuipers JAM, van Swaaij WPM (1999) Ensemble correlation PIV applied to bubble plumes rising in a bubble column. Chem Eng Sci 54(21):5159–5171CrossRefGoogle Scholar
  4. Guasto JS, Huang P, Breuer KS (2005) Statistical particle tracking velocimetry using molecular and quantum dot tracer particles. Paper IMECE2005-80051, Proceedings of ASME IMECE, Orlando, FL, November 2005Google Scholar
  5. Guasto J, Huang P, Breuer K (2006) Statistical particle tracking velocimetry using molecular and quantum dot tracer particles. Exp Fluids 41:869–880CrossRefGoogle Scholar
  6. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics with special applications to particulate media. Kluwer, HinghamGoogle Scholar
  7. Jin S, Huang P, Park J, Yoo JY, Breuer KS (2004) Near-wall surface velocity using evanescent wave illumination. Exp Fluids 37:825–833CrossRefGoogle Scholar
  8. Meinhart C, Wereley S, Santiago J (1999) PIV measurements of a microchannel flow. Exp Fluids 27(5):414–419CrossRefGoogle Scholar
  9. Meinhart CD, Wereley ST, Santiago JG (2000) A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122:285–289CrossRefGoogle Scholar
  10. Murray CB, Morris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 155:8706–8715CrossRefGoogle Scholar
  11. Ness JM, Akhtar RS, Latham CB, Roth KA (2003) Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J Histochem Cytochem 51(8):981–987Google Scholar
  12. Pouya S, Koochesfahani M, Snee P, Bawendi M, Nocera D (2005) Single quantum dot (QD) imaging of fluid flow near surfaces. Exp Fluids 39(4):784–786CrossRefGoogle Scholar
  13. Quantum Dot Corp. website (2005) www.qdot.comGoogle Scholar
  14. Sadr R, Li H, Yoda M (2005) Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination. Exp Fluids 38(1):90–98CrossRefGoogle Scholar
  15. Santiago J, Wereley S, Meinhart C, Beebe D, Adrian R (1998) A micro particle image velocimetry system. Exp Fluids 25(4):316–319CrossRefGoogle Scholar
  16. Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1:2–21CrossRefGoogle Scholar
  17. Watson A, Wu X, Bruchez M (2003) Lighting up cells with quantum dots. BioTechniques 34:296–303Google Scholar
  18. Wereley ST, Meinhart CD (2004) Micron resolution particle image velocimetry. In: Breuer K (ed) Micro- and nano-scale diagnostic techniques. Springer, New YorkGoogle Scholar
  19. Westerweel J, Geelhoed PF, Lindken R (2004) Single-pixel resolution ensemble correlation for micro-PIV applications. Exp Fluids 37(3):375–384CrossRefGoogle Scholar
  20. Wu X (2003) Detecting nuclear antigens using Qdot streptavidin conjugates. Quantum Dot Vis 1:10–13Google Scholar
  21. Zettner C, Yoda M (2003) Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp Fluids 34(1):115–121Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Patrick E. Freudenthal
    • 1
  • Matt Pommer
    • 2
  • Carl D. Meinhart
    • 2
  • Brian D. Piorek
    • 3
  1. 1.Nanex LLCSanta BarbaraUSA
  2. 2.Department of Mechanical and Environmental EngineeringUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Chemistry DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations