Experiments in Fluids

, Volume 43, Issue 4, pp 525–533 | Cite as

Quantum nanospheres for sub-micron particle image velocimetry

  • Patrick E. Freudenthal
  • Matt Pommer
  • Carl D. Meinhart
  • Brian D. Piorek
Research Article

Abstract

Quantum Nanospheres™ (QNs) have been developed as a new type of flow-tracing particle for micron resolution particle image velocimetry (PIV). The 70 nm diameter QNs were created by conjugating quantum dots to polystyrene beads. The fluorescent QNs have a large Stokes’ shift and are impervious to photobleaching. The use of QNs as flow-tracing particles for micro-PIV was demonstrated by measuring fluid motion in a 30 × 300 μm channel. Using an interrogation region of 1 × 1,024 pixels and ensemble averaging 1,800 image pairs, the physical volume of the interrogation region was 117 μm × 117 μm × 2 μm.

Abbreviations

PIV

Particle image velocimetry

QD

Quantum dot

QN

Quantum nanosphere

CdSe

Cadmium selenide

ZnS

Zinc sulfide

Nd:YAG

Neodymium-doped yttrium aluminum garnet

PSB

Polystyrene bead

SEM

Scanning electron microscope

Notes

Acknowledgments

This work has been supported by the Institute for Collaborative Biotechnologies through grant DAAD19-03-D-0004 from the U.S. Army; by AFOSR grants FA9550-04-C-0114 & FA9950-04-0106; and by NSF:NIRT CTS-0404444. We would like to thank Ms Tanja Siegmann, of the University of Bremen, who conducted the initial investigation into the use of QDs as flow-tracing particles. The experiments conducted in this research comply with the current laws of the United States of America, where they were performed.

References

  1. Adrian R (1991) Particle-imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304CrossRefGoogle Scholar
  2. Dabboursi BO, Rodriquez-Viejo J, Mikulec FV, Heine JR, Mattoussi H, Ober R, Jensen KF, Bawendi MG (1997) (CdSe)ZnS core-shell quantum dots: synthesis and characterization of a size series of highly luminescent nanocrystallites. J Phys Chem B 101:9463–9475CrossRefGoogle Scholar
  3. Delnoij E, Westerweel J, Deen NG, Kuipers JAM, van Swaaij WPM (1999) Ensemble correlation PIV applied to bubble plumes rising in a bubble column. Chem Eng Sci 54(21):5159–5171CrossRefGoogle Scholar
  4. Guasto JS, Huang P, Breuer KS (2005) Statistical particle tracking velocimetry using molecular and quantum dot tracer particles. Paper IMECE2005-80051, Proceedings of ASME IMECE, Orlando, FL, November 2005Google Scholar
  5. Guasto J, Huang P, Breuer K (2006) Statistical particle tracking velocimetry using molecular and quantum dot tracer particles. Exp Fluids 41:869–880CrossRefGoogle Scholar
  6. Happel J, Brenner H (1983) Low Reynolds number hydrodynamics with special applications to particulate media. Kluwer, HinghamGoogle Scholar
  7. Jin S, Huang P, Park J, Yoo JY, Breuer KS (2004) Near-wall surface velocity using evanescent wave illumination. Exp Fluids 37:825–833CrossRefGoogle Scholar
  8. Meinhart C, Wereley S, Santiago J (1999) PIV measurements of a microchannel flow. Exp Fluids 27(5):414–419CrossRefGoogle Scholar
  9. Meinhart CD, Wereley ST, Santiago JG (2000) A PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122:285–289CrossRefGoogle Scholar
  10. Murray CB, Morris DJ, Bawendi MG (1993) Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites. J Am Chem Soc 155:8706–8715CrossRefGoogle Scholar
  11. Ness JM, Akhtar RS, Latham CB, Roth KA (2003) Combined tyramide signal amplification and quantum dots for sensitive and photostable immunofluorescence detection. J Histochem Cytochem 51(8):981–987Google Scholar
  12. Pouya S, Koochesfahani M, Snee P, Bawendi M, Nocera D (2005) Single quantum dot (QD) imaging of fluid flow near surfaces. Exp Fluids 39(4):784–786CrossRefGoogle Scholar
  13. Quantum Dot Corp. website (2005) www.qdot.comGoogle Scholar
  14. Sadr R, Li H, Yoda M (2005) Impact of hindered Brownian diffusion on the accuracy of particle-image velocimetry using evanescent-wave illumination. Exp Fluids 38(1):90–98CrossRefGoogle Scholar
  15. Santiago J, Wereley S, Meinhart C, Beebe D, Adrian R (1998) A micro particle image velocimetry system. Exp Fluids 25(4):316–319CrossRefGoogle Scholar
  16. Sinton D (2004) Microscale flow visualization. Microfluid Nanofluid 1:2–21CrossRefGoogle Scholar
  17. Watson A, Wu X, Bruchez M (2003) Lighting up cells with quantum dots. BioTechniques 34:296–303Google Scholar
  18. Wereley ST, Meinhart CD (2004) Micron resolution particle image velocimetry. In: Breuer K (ed) Micro- and nano-scale diagnostic techniques. Springer, New YorkGoogle Scholar
  19. Westerweel J, Geelhoed PF, Lindken R (2004) Single-pixel resolution ensemble correlation for micro-PIV applications. Exp Fluids 37(3):375–384CrossRefGoogle Scholar
  20. Wu X (2003) Detecting nuclear antigens using Qdot streptavidin conjugates. Quantum Dot Vis 1:10–13Google Scholar
  21. Zettner C, Yoda M (2003) Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp Fluids 34(1):115–121Google Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Patrick E. Freudenthal
    • 1
  • Matt Pommer
    • 2
  • Carl D. Meinhart
    • 2
  • Brian D. Piorek
    • 3
  1. 1.Nanex LLCSanta BarbaraUSA
  2. 2.Department of Mechanical and Environmental EngineeringUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Chemistry DepartmentUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations