Experiments in Fluids

, Volume 42, Issue 2, pp 217–224 | Cite as

Flows on the nozzle plate of an inkjet printhead

  • Bart Beulen
  • Jos de Jong
  • Hans Reinten
  • Marc van den Berg
  • Herman Wijshoff
  • Rini van Dongen
Research Article

Abstract

Flow patterns of ink layers on the nozzle plate of a piezo-driven printhead are investigated. Two different flow types are identified. First, a jet of droplets induces a radial airflow in the direction of the jet, which in turn causes a liquid flow towards the nozzle. Second, the movement of the meniscus in the nozzle causes an equally strong flow, but completely different flow patterns. The results are presented in a phase diagram with pulse amplitude and firing frequency as parameters.

References

  1. Bogy DB, Talke FE (1984) Experimental and theoretical study of wave propagation phenomena in drop-on-demand inkjet devices. IBM J Res Dev 28(3):314–320Google Scholar
  2. Chen A, Basaran O (2002) A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production. Phys Fluids 14(L1)Google Scholar
  3. De Gennes PG (1985) Wetting: statics and dynamics. Rev Mod Phys 57(3):827–863CrossRefGoogle Scholar
  4. De Gennes PG, Brochard-Wyart F, Quere D (2004) Capillarity and wetting phenomena, drops, bubbles, pearls, waves. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  5. De Jong J, Reinten H, Van den Berg M, Wijshoff H, Versluis M, De Bruin G, Lohse D (2006) Air entrapment in piezo-driven inkjet printheads. J Acoust Soc Am 120(3):1257–1265CrossRefGoogle Scholar
  6. Le HP (1998) Progress and trends in ink-jet printing technology. J Imaging Sci Technol 42(1):49Google Scholar
  7. Lee HC (1976) Boundary layer around liquid jet. IBM J Res Dev 21(1):48–51CrossRefGoogle Scholar
  8. Lighthill MJ (1978) Waves in fluids. Cambridge University Press, CambridgeMATHGoogle Scholar
  9. Marmottant P, Hilgenfeldt S (2003) Controlled vesicle deformation and lysis by single oscillating bubbles. Nature 423:153–156CrossRefGoogle Scholar
  10. Meacham JM, Varady MJ, Degertekin FL, Fedorov AG (2005) Droplet formation and ejection from a micromachined ultrasonic droplet generator: visualization and scaling. Phys Fluids 17(100605)Google Scholar
  11. Oron A, Davis SH, George Bankoff S (1997) Long-scale evolution of thin liquid films. Rev Mod Phys 69(3):931–980CrossRefGoogle Scholar
  12. Schlichting H (1979) Boundary layer theory. McGraw-Hill, New York, pp 230–235MATHGoogle Scholar
  13. Squires T, Quake S (2005) Microfluidics: fluid physics at nanoliter scale. Rev Mod Phys 77(3):977–1026CrossRefGoogle Scholar
  14. Wasan DT, Nikolov AD, Brenner H (2001) Droplets speeding on surfaces. Science 291(5504):605–606CrossRefGoogle Scholar
  15. Williams C (2006) Ink-jet printers go beyond paper. Phys World 19(24)Google Scholar
  16. Yang JC, Chien W, King M, Grosshandler WL (1997) A simple piezoelectric droplet generator. Exp Fluids 23:445–447CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Bart Beulen
    • 1
  • Jos de Jong
    • 2
  • Hans Reinten
    • 3
  • Marc van den Berg
    • 3
  • Herman Wijshoff
    • 3
  • Rini van Dongen
    • 1
  1. 1.Department of Applied PhysicsEindhoven University of TechnologyEindhovenThe Netherlands
  2. 2.Physics of Fluids group, Faculty of Science and Technology and Burgers Center of Fluid DynamicsUniversity of TwenteEnschedeThe Netherlands
  3. 3.Océ Technologies B.V.VenloThe Netherlands

Personalised recommendations