Experiments in Fluids

, Volume 42, Issue 1, pp 41–48

Microscale Synthetic Schlieren

Research Article

Abstract

We develop the axisymmetric Synthetic Schlieren technique to study the wake of a microscale sphere settling through a density stratification. A video-microscope was used to magnify and image apparent displacements of a micron-sized random-dot pattern. Due to the nature of the wake, density gradient perturbations in the horizontal greatly exceed those in the vertical, requiring modification of previously developed axisymmetric techniques. We present results for 780 and 383 μm spheres, and describe the limiting role of noise in the system for a 157 μm sphere. This technique can be instrumental in understanding a range of ecological and environmental oceanic processes on the microscale.

References

  1. Azam F, Long RA (2001) Sea snow microcosms. Nature 414:495–498CrossRefGoogle Scholar
  2. Burton RA (1949) A modified schlieren apparatus for large areas of field. J Opt Soc Am 39:907–909CrossRefGoogle Scholar
  3. Dalziel SB, Hughes GO, Sutherland BR (2000) Whole-field density measurements by ‘synthetic schlieren’. Exp Fluids 28:322–335CrossRefGoogle Scholar
  4. Flynn MR, Onu KO, Sutherland BR (2003) Internal wave excitation by a vertically oscillating sphere. J Fluid Mech 494:65–93CrossRefMathSciNetMATHGoogle Scholar
  5. McIntyre S, Alldredge AL, Gotschalk CC (1995) Accumulation of marine snow at density discontinuities in the water column. Limnol Oceanogr 40:449–468CrossRefGoogle Scholar
  6. Onu K, Flynn MR, Sutherland BR (2003) Schlieren measurement of axisymmetric internal waves. Exp Fluids 35:24-31CrossRefGoogle Scholar
  7. Oster G (1965) Density gradients. Sci Am 213:70CrossRefGoogle Scholar
  8. Peacock T, Tabaei A (2005) Visualization of nonlinear effects in reflecting internal wave beams. Phys Fluids 17:061702CrossRefGoogle Scholar
  9. Richard H, Raffel M (2001) Principle and applications of the background oriented schlieren (BOS) method. Meas Sci Tech 12:1576–1585CrossRefGoogle Scholar
  10. Srdić-Mitrović AN, Mohamed NA, Fernando JS (1999) Gravitational settling of particles through density interfaces. J Fluid Mech 381:175–198CrossRefMATHGoogle Scholar
  11. Sutherland RR, Dalziel SB, Hughes GO, Linden PF (1999) Visualisation and measurement of internal waves by ‘synthetic schlieren’. Part I: vertically oscillating cylinder. J Fluid Mech 390:93–126CrossRefMATHGoogle Scholar
  12. Toepler A (1864) Beobachtungen nach einer neuen optischen Methode. Max Cohen u. Sohn, BonnGoogle Scholar
  13. Torres CR, Hanazaki H, Ochoa J, Castillo J, Van Woert M (2000) Flow past a sphere moving vertically in a stratified diffusive fluid. J Fluid Mech 417:211–236CrossRefMathSciNetMATHGoogle Scholar
  14. Venkatakrishnan L, Meier GEAL (2004) Density measurements using the Background Oriented Schlieren technique. Exp Fluids 37:237-247CrossRefGoogle Scholar
  15. Weyl FJ (1954) Analysis of optical methods. In: Ladenburg RW (eds) Physical measurements in gas dynamics and combustion. Princeton University Press, Princeton, pp. 3–25Google Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • King-Yeung Yick
    • 1
  • Roman Stocker
    • 2
  • Thomas Peacock
    • 3
  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Civil and Environmental EngineeringMassachusetts Institute of TechnologyCambridgeUSA
  3. 3.Department of Mechanical EngineeringMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations