Experiments in Fluids

, Volume 41, Issue 2, pp 327–341 | Cite as

Wall-shear-stress and near-wall turbulence measurements up to single pixel resolution by means of long-distance micro-PIV

Research Article

Abstract

A digital large-format long-distance micro-particle image velocimetry system (μ-PIV) was developed to measure the wall-shear-stress and the near-wall flow properties in a laminar, transitional and turbulent boundary layer flow along a flat plate, non-intrusively with high accuracy and spatial resolution. To achieve the desired measurement accuracy and spatial resolution, all experimental limitations associated with the seeding, light-sheet, out-of-focus particles, optical aberrations and distortions were successfully solved and various spatial correlation image analysis approaches based on the two-point or single-pixel ensemble correlation were developed, analyzed and compared with the state-of-the-art spatial correlation techniques. The instrument is well suited to prove fundamental fluid mechanical hypotheses such as the universality of the constants κ and B of the logarithmic law. However, for the analysis of flows at large Reynolds and Mach numbers, where small spatial dimensions and strong flow gradients prevent accurate measurements, this technique can be applied as well.

References

  1. Adrian RJ (1988) Statistical properties of particle image velocimetry measurements in turbulent flow. In: Laser anemometry in fluid mechanics III. Springer, Berlin Heidelberg New York, pp 115–129Google Scholar
  2. Barenblatt GI (1993) Scaling laws for fully developed turbulent shear flows, Parts 1 & 2. J Fluid Mech 248:513–529CrossRefMathSciNetMATHGoogle Scholar
  3. Bergmann L, Schäfer C (2004) Lehrbuch der Experimentalphysik Bd. 3 Optik. de Gruyter, Berlin New YorkGoogle Scholar
  4. Billy F, David L, Pineau G (2004) Single pixel resolution correlation applied to unsteady flow measurements. Meas Sci Technol 15:1039–1045CrossRefGoogle Scholar
  5. Clauser FH (1954) Turbulent boundary layers in adverse pressure gradients. J Aeronaut Sci 21:91–108Google Scholar
  6. Dieterle L, Weichert R (1995) Particle image velocimetry for submicron particles. Preprints of the 4th Int. Congress Optical Particle Sizing, PARTEC 95, Nürnberg, Germany, pp 215–224Google Scholar
  7. Dieterle L, Weichert R (1996) Particle image velocimetry applied to microstructures in turbulent flows. In: Rodi, Bergels (eds) Eng Turb Mod and Exp 3, Elsevier, Amsterdam, pp 391–400Google Scholar
  8. Dieterle L (1997) Entwicklung eines abbildenden Messverfahrens (PIV) zur Untersuchung von Mikrostrukturen in turbulenten Strömungen. PhD thesis, Deutscher UniversitätsverlagGoogle Scholar
  9. Kähler CJ (2004a) Investigation of the spatio-temporal flow structure in the buffer region of a turbulent boundary layer by means of multiplane stereo PIV. Exp Fluids 36:114–130CrossRefGoogle Scholar
  10. Kähler CJ (2004b) The significance of coherent flow structures for the turbulent mixing in wall-bounded flows. DLR research report DLR-FB 2004–24, ISSN 1434–8454, Germany http://www.webdoc.sub.gwdg.de/diss/2004/kaehler/kaehler.pdf
  11. Kähler CJ (2005) The significance of turbulent eddies for the mixing in boundary layers. IUTAM symposium on one hundred years of boundary layer research, Göttingen, Aug 11–14 2004. Kluwer, DordrechtGoogle Scholar
  12. Kähler CJ, Dreyer M (2004) Dynamic 3D stereoscopic PIV and Schlieren investigation of turbulent flow structures generated by laser induced plasma. In: Proceedings of the 12th international symposium on application of laser technology to fluid mechanics, July 12–15, Lisbon, PortugalGoogle Scholar
  13. Kähler CJ, Scholz U (2003) Investigation of laser-induced flow structures with time-resolved PIV, BOS and IR technology. In: Proceedings of the 5th international symposium on particle image velocimety, Sept. 22–24, Busan, KoreaGoogle Scholar
  14. Kähler CJ, Scholz U (2006) Application of long-distance micro-PIV at large Reynolds number. In: Proceedings of the 13th international symposium on applications of laser techniques to fluid mechanics, June 26–29, Lisbon, PortugalGoogle Scholar
  15. Kähler CJ, Sammler B, Kompenhans J (2002) Generation and control of particle size distributions for optical velocity measurement techniques in fluid mechanics. Exp Fluids 33:736–742Google Scholar
  16. Kähler CJ, McKenna R, Scholz U (2005) Wall-shear-stress measurements at moderate Re-numbers with single pixel resolution using long-distance μ-PIV—an accuracy assessment. In: Proceedings of the 6th international symposium on particle image velocimetry, September 21–23, Passadena, California, USAGoogle Scholar
  17. Köhler U (2000) Entwicklung eines Messverfahrens (PIV) zur Untersuchung von Partikelbewegungen in wandnahen turbulenten Strömungen. PhD thesis, ISBN 3-89720-451-7, Clausthal-Zellerfeld, GermanyGoogle Scholar
  18. Lecordier B, Westerweel J (2004) The EUROPIV synthetic image generator (S.I.G.). In: Particle image velocimetry: recent improvements. Proceedings of the EUROPIV 2 workshop held in Zaragoza, Spain, March 31–April 1 2003. Springer, Berlin Heidelberg New YorkGoogle Scholar
  19. Lindken R, Di Silvestro F, Westerweel J, Nieuwstadt FTM (2002a) Turbulence measurements with μ-PIV in large-scale pipe flows. In: Proceedings of the 11th international symposium on application of laser technology to fluid mechanics, July 8–11, Lisbon, PortugalGoogle Scholar
  20. Lindken R, Poelma C, Di Silvestro F, Westerweel J, Nieuwstadt FTM (2002b) Long-distance μ-PIV for turbulence measurements in large-scale pipe flow. In: Proceedings of the 10th international symposium on flow viszalization, August 26–29 Kyoto, JapanGoogle Scholar
  21. LMT Lichtmesstechnik GmbH Berlin (2005) http://www.lmt-berlin.de
  22. Meinhart CD, Wereley ST, Santiago JG (2000) Micron resolution velocimetry techniques. In: Laser techniques applied to fluid mechanics: selected papers from the 9th international symposium on application of laser technology to fluid mechanics. Lisbon, Springer, Berlin Heidelberg New York, pp 57–70Google Scholar
  23. Meinhart CD, Wereley ST, Santiago JG (1999) PIV algorithm for estimating time-averaged velocity fields. J Fluids Eng 122:285–289CrossRefGoogle Scholar
  24. Questar (2005) http://www.company7.com
  25. Raffel M, Favier D, Berton E, Maresca C, Rondot C, Nsimba M, Geissler W (2005) Micro-PIV and ELDV wind tunnel investigations of the laminar separation bubble above a helicopter blade tip. In: Proceedings of the 6th international symposium on particle image velocimetry, September 21–23, Passadena, California, USAGoogle Scholar
  26. Raffel M, Favier D, Berton E, Rondot C, Nsimba M, Geissler W (2006) Micro-PIV and ELDV wind tunnel investigations of the laminar separation bubble above a helicopter blade tip. Meas Sci Technol 17:1–7CrossRefGoogle Scholar
  27. Schlichting H, Gersten K (1997) Grenzschicht-Theorie. Springer, Berlin Heidelberg New YorkMATHGoogle Scholar
  28. Scholz U, Kähler CJ (2006) Dynamics of flow structures on heaving and pitching airfoils. In: Proceedings of the 13th international symposium on applications of laser techniques to fluid mechanics, June 26–29, Lisbon, PortugalGoogle Scholar
  29. Stanislas M, Okamoto K, Kähler CJ (2003) Main results of the first international PIV challenge. Meas Sci Technol 14:R1–R27CrossRefGoogle Scholar
  30. Stanislas M, Okamoto K, Kähler CJ, Westerweel J (2005) Main results of the second international PIV challenge. Exp Fluids 39:170–191CrossRefGoogle Scholar
  31. Urushihara T, Meinhart CD, Adrian RJ (1993) Investigation of the logarithmic layer in pipe flow using particle image velocimetry, near-wall turbulent flows. Elsevier, Amsterdam, pp 433–336Google Scholar
  32. von Kármán T (1930) Mechanische Ähnlichkeit und Turbulenz. Nachrichten v. d. Gesellschaft der Wissenschaften zu Göttingen Math Phys Klasse, pp 58–76Google Scholar
  33. Wereley ST, Meinhart CD, Gray HB (1999) Depth effects in volume illuminated PIV, In: Proceedings of the 3th international symposium on particle image velocimety, Sept. 16–18, Santa Barbara, California, USAGoogle Scholar
  34. Westerweel J, Geelhoed P, Lindken R (2004) Single-pixel resolution ensemble correlation for micro-PIV applications. Exp Fluids 37:375–384CrossRefGoogle Scholar
  35. Winter KG (1977) An outline of the techniques available for the measurement of skin friction in turbulent boundary layers. Prog Aerospace Sci 18:1–57CrossRefMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  1. 1.Institut für StrömungsmechanikTechnische Universität BraunschweigBraunschweigGermany

Personalised recommendations