Experiments in Fluids

, Volume 39, Issue 1, pp 1–9 | Cite as

Particle field characterization by digital in-line holography: 3D location and sizing

  • S. L. Pu
  • D. Allano
  • B. Patte-Rouland
  • M. Malek
  • D. Lebrun
  • K. F. Cen
Originals

Abstract

Recent developments have shown the potential of digital in-line holography for diagnostics in fluids. This new method provides a low-cost and easy access method for measuring both size and velocity of small particles in a volume. Here it is shown that by applying traditional image processing tools on the particle images digitally reconstructed, statistically reliable results on particles size and location are provided. The method is experimentally illustrated by glass microspheres that are moving in a turbulent flow generated by an annular jet. A comparison with the histogram diameters provided by a common diffraction particle sizer are presented.

List of symbols

1−O (ξ, η)

Amplitude distribution in the object field

Iz (x,y)

Intensity distribution at a distance z

Ze

Distance from the object to the sensor plane

Zr

Reconstruction distance

Zs

Curvature radius of the illuminating wave front

λ

Wavelength of the laser source

Hz(x,y)

Fresnel Kernel

ψz (x,y)

Reconstruction wavelet function

R (x ,y)

Reconstructed image

PSF(x, y)

Point spread function

δCCD

Pixel size

d

Theoretical diameter of the particle image

D

Diameter of the experimental particle image

F

Beam obscuration

ɛ

Tolerance parameter for sampling condition

δz

Measurement accuracy on axial coordinate

References

  1. Belaïd S, Lebrun D, Özkul C (1997) Application of two dimensional wavelet transform to hologram analysis: visualization of glass fibers in a turbulent flame. Opt Eng 36:1947–1951Google Scholar
  2. Blaisot JB, Ledoux M (1998) Simultaneous measurement of diameter and position of spherical particles in a spray by an original imaging method. Appl Opt 37(22):5137–5144Google Scholar
  3. Buraga-Lefebvre C, Coëtmellec S, Lebrun D, Özkul C (2000) Application of wavelet transform to hologram analysis: three dimensional location of particles. Opt Lasers Eng 33:409–421CrossRefGoogle Scholar
  4. Chan WT, Ko WM (1978) Coherent structures in the outer mixing region of annular jets. J Fluid Mech 89:515–533Google Scholar
  5. Coetmellec S, Buraga-Lefebvre C, Lebrun D, Özkul C (2001) Application of in-line digital holography to multiple plane velocimetry. Meas Sci Technol 12:1392–1397CrossRefGoogle Scholar
  6. Fournier C, Ducottet C, Fournel T(2004) Digital in-line holography: influence of the reconstruction function on the axial profile of a reconstructed particle image. Meas Sci Technol 15:686–693CrossRefGoogle Scholar
  7. Goodman JW (1966) Introduction to Fourier optics, 2nd edn. McGraw-Hill, TokyoGoogle Scholar
  8. Lebrun D, Touil CE, Özkul C (1996) Methods for the deconvolution of defocused-images pairs recorded separately on two CCD cameras: application to particle sizing. Appl Opt 35(32):6375–6381Google Scholar
  9. Lebrun D, Belaïd S, Özkul C (1999) Hologram reconstruction by use of optical wavelet transform. Appl Opt 38:3730–3734Google Scholar
  10. Lebrun D, Benkouider AM, Coëtmellec S, Malek M (2003) Particle field digital holography reconstruction in arbitrary tilted planes. Opt Exp 11:224–229 Available from<http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-3-224>Google Scholar
  11. Malek M, Coëtmellec S, Allano D, Lebrun D (2003) Formulation of in-line holography process by a linear shift invariant system: application of the measurement of fiber diameter. Opt Commun 223:263–271CrossRefGoogle Scholar
  12. Malek M, Allano D, Coëtmellec S, Özkul C, Lebrun D (2004a) Digital in-line holography for three-dimensional-two components particle tracking velocimetry. Meas Sci Tech 15:699–705CrossRefGoogle Scholar
  13. Malek M, Allano D, Coetmellec S, Lebrun D (2004b) Digital in-line holography: influence of the shadow density on particle field extraction. Opt Express 12(10):2270–2279CrossRefGoogle Scholar
  14. Meng H, Anderson WL, Hussain F, Liu DD (1993) Intrinsic speckle noise in in-line particle holography. J Opt Soc Am A 10(9):2046–2058Google Scholar
  15. Milgram JH, Li W (2002) Computational reconstruction of images from holograms. Appl Opt 41:853–864PubMedGoogle Scholar
  16. Nishihara K, Hatano S, Nagayama K (1997) New method of obtaining particle diameter by the fast Fourier transform pattern of the in-line hologram. Opt Eng 36(9):2429–2439Google Scholar
  17. Owen RB, Zozulya AA (2000) In-line digital holographic sensor for monitoring and characterizing marine particulates. Opt Eng 39:2187–2197CrossRefGoogle Scholar
  18. Ozkul C (1981) Traitement Optique des figures de diffraction de Fraunhofer pour une analyse avec une ligne de microphotodiodes. Optica Acta 28(11):1543–1549Google Scholar
  19. Pan G, Meng H (2001) Digital in-line holographic PIV for 3D particulate flow diagnostics. In: Proceedings of the fourth international symposium on particle image velocimetry, Göttingen, Germany, 17–19 September, 2001Google Scholar
  20. Patte-Rouland B, Lalizel G, Moreau J, Rouland E (2001) Flow analysis of an annular jet by particle image velocimetry and proper orthogonal decomposition. Meas Sci Technol 12:1404–1412CrossRefGoogle Scholar
  21. Royer H (1974) An application of high-speed microholography: the metrology of fogs. Nouv Rev Opt 5(2):87–93CrossRefGoogle Scholar
  22. Sheng J, Malkiel E, Katz J (2003) Single beam two views holographic particle image velocimetry. Appl Opt 42:235–249PubMedGoogle Scholar
  23. Slimani F, Grehan G, Gouesbet G, Allano D (1984) Near-field Lorenz-Mie theory and its application to microholography. Appl Opt 23(22):4140–4148Google Scholar
  24. Sun H, Dong H, Player MA, Watson J, Paterson DM Perkins R (2002) In line digital video holography for the study of erosion processes in sediments. Meas Sci Technol 13:L7–L12CrossRefGoogle Scholar
  25. Thompson BJ (1989) Holographic methods for particle size and velocity measurements recent advances. In: Proceedings of holographic optics. II. Principles and applications, vol 1136, Paris, France, pp 308–325Google Scholar
  26. Tyler GA, Thompson BJ (1976) Fraunhofer holography applied to particle size analysis. A reassessment. Optica Acta 23(9):685–700Google Scholar
  27. Xu W, Jericho MH, Meinertzhagen IA, Kreuzer HJ (2001) Digital in-line holography for biological applications. PNAS 98:11301–11305CrossRefPubMedGoogle Scholar
  28. Xu W, Jericho MH, Meinertzhagen IA, Kreuzer HJ (2002) Digital in-line holography of microspheres. Appl Opt 41:5367–5375PubMedGoogle Scholar
  29. Xu W, Jericho MH, Kreuzer HJ, Meinertzhagen IA (2003) Tracking particles in four dimensions with in-line holographic microscopy. Opt Lett 28:164–166PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. L. Pu
    • 1
    • 2
  • D. Allano
    • 1
  • B. Patte-Rouland
    • 1
  • M. Malek
    • 1
  • D. Lebrun
    • 1
  • K. F. Cen
    • 2
  1. 1.UMR 6614 CoriaTechnopole du MadrilletSaint-Etienne du RouvrayFrance
  2. 2.Clean Energy And Environment Engineering Key Lab of MOEZhejiang UniversityHangzhouChina

Personalised recommendations