Experiments in Fluids

, Volume 39, Issue 1, pp 1–9

Particle field characterization by digital in-line holography: 3D location and sizing

  • S. L. Pu
  • D. Allano
  • B. Patte-Rouland
  • M. Malek
  • D. Lebrun
  • K. F. Cen

DOI: 10.1007/s00348-005-0937-0

Cite this article as:
Pu, S.L., Allano, D., Patte-Rouland, B. et al. Exp Fluids (2005) 39: 1. doi:10.1007/s00348-005-0937-0


Recent developments have shown the potential of digital in-line holography for diagnostics in fluids. This new method provides a low-cost and easy access method for measuring both size and velocity of small particles in a volume. Here it is shown that by applying traditional image processing tools on the particle images digitally reconstructed, statistically reliable results on particles size and location are provided. The method is experimentally illustrated by glass microspheres that are moving in a turbulent flow generated by an annular jet. A comparison with the histogram diameters provided by a common diffraction particle sizer are presented.

List of symbols

1−O (ξ, η)

Amplitude distribution in the object field

Iz (x,y)

Intensity distribution at a distance z


Distance from the object to the sensor plane


Reconstruction distance


Curvature radius of the illuminating wave front


Wavelength of the laser source


Fresnel Kernel

ψz (x,y)

Reconstruction wavelet function

R (x ,y)

Reconstructed image

PSF(x, y)

Point spread function


Pixel size


Theoretical diameter of the particle image


Diameter of the experimental particle image


Beam obscuration


Tolerance parameter for sampling condition


Measurement accuracy on axial coordinate

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • S. L. Pu
    • 1
    • 2
  • D. Allano
    • 1
  • B. Patte-Rouland
    • 1
  • M. Malek
    • 1
  • D. Lebrun
    • 1
  • K. F. Cen
    • 2
  1. 1.UMR 6614 CoriaTechnopole du MadrilletSaint-Etienne du RouvrayFrance
  2. 2.Clean Energy And Environment Engineering Key Lab of MOEZhejiang UniversityHangzhouChina

Personalised recommendations