Experiments in Fluids

, Volume 40, Issue 2, pp 267–276 | Cite as

Coherent structures in unsteady swirling jet flow

  • C. E. Cala
  • E. C. Fernandes
  • M. V. Heitor
  • S. I. Shtork
Research Article


An LDA technique and phase-averaging analysis were used to study unsteady precessing flow in a model vortex burner. Detailed measurements were made for Re=15,000 and S=1.01. On the basis of the analysis of phase-averaged data and vortex detection by the λ2-technique of Joeng and Hussain (1995), three precessing spiral vortex structures were identified: primary vortex (PV), inner secondary vortex (ISV), and outer secondary vortex (OSV). The PV is the primary and most powerful structure as it includes primary vorticity generated by the swirler; the ISV and OSV are considered here as secondary vortical structures. The jet breakdown zone is the conjunction of a pair of co-rotating co-winding spiral vortices, PV and ISV. The interesting new feature described is that the secondary vortices form a three-dimensional vortex dipole with a helical geometry. The effect of coupling of secondary vortices was suggested as a mechanism of enhanced stability reflected in their increased axial extent.


  1. Al-Abdeli YM, Masri AR (2004) Precession and recirculation in turbulent swirling isothermal jets. Combust Sci Technol 176:645–665CrossRefGoogle Scholar
  2. Alekseenko SV, Kuibin PA, Okulov VL, Shtork SI (1999) Helical vortices in swirl flow. J Fluid Mech 382:195–243MATHCrossRefMathSciNetGoogle Scholar
  3. Alekseenko SV, Shtork SI (1995) Experimental study of vortex breakdown in intensively swirling flows. In: EUROMECH colloquium N 336 on flows dominated by centrifugal and Coriolis forces, Trondheim, NorwayGoogle Scholar
  4. Althaus W, Brücker C, Weimer M (1995) Breakdown of slender vortices. In: Green S (ed) Fluid vortices. Kluwer Academic Publishers, pp 373–426Google Scholar
  5. Anacleto PM, Fernandes EC, Heitor MV, Shtork SI (2003) Swirl flow structure and flame characteristics in a model lean premixed combustor. Combust Sci Technol 175(8):1369–1388CrossRefGoogle Scholar
  6. Billant P, Chomaz J-M, Huerre P (1998) Experimental study of vortex breakdown in swirling jets. J Fluid Mech 376:183–219MATHCrossRefMathSciNetGoogle Scholar
  7. Chanaud RC (1965) Observations of oscillatory motion in certain swirling flows. J Fluid Mech 21:11–127CrossRefGoogle Scholar
  8. Derksen J, Van den Akker HEA (2000) Simulation of vortex core precession in a reverse-flow cyclone. AIChE J 46(7):1317–1331CrossRefGoogle Scholar
  9. Escudier MP (1988) Vortex breakdown: observations and explanations. Prog Aerosp Sci 25:189–229CrossRefGoogle Scholar
  10. Fernandes EC (1998) The onset of combustion-driven acoustic oscillations. Ph.D. thesis, Instituto Superior TécnicoGoogle Scholar
  11. Froud D, O’Doherty T, Syred N (1995) Phase averaging of the precessing vortex core in a swirl burner under piloted and premixed combustion conditions. Combust Flame 100:407–412CrossRefGoogle Scholar
  12. Gallaire F, Chomaz J-M (2003a) Instability mechanisms in swirling flows. Phys Fluids 15(9):2622–2639CrossRefMathSciNetGoogle Scholar
  13. Gallaire F, Chomaz J-M (2003b) Mode selection in swirling jet experiments: a linear stability analysis. J Fluid Mech 494:223–253MATHCrossRefMathSciNetGoogle Scholar
  14. Gallaire F, Rott S, Chomaz J-M (2004) Experimental study of a free and forced swirling jet. Phys Fluids 16(8):2907–2917CrossRefGoogle Scholar
  15. Galletti C, Paglianti A, Lee KC, Yianneskis M (2004) Reynolds number and impeller diameter effects on instabilities in stirred vessels. AIChE J 50(9):2050–2063CrossRefGoogle Scholar
  16. Goto S, Kida S (2003) Enhanced stretching of material lines by antiparallel vortex pairs in turbulence. Fluid Dyn Res 33:403–431MATHCrossRefMathSciNetGoogle Scholar
  17. Griffiths AJ, Yazdabadi PA, Syred N (1998) Alternate eddy shedding set up by the nonaxisymmetric recirculation zone at the exhaust of a cyclone dust separator. J Fluids Eng 120(1):193–199Google Scholar
  18. Grosjean N, Graftieaux L, Michard M, Hübner W, Tropea C, Volkert J (1997) Combining LDA, PIV for turbulence measurements in unsteady swirling flows. Meas Sci Technol 8:1523–1532CrossRefGoogle Scholar
  19. Hartmann H, Derksen JJ, Van den Akker HEA (2004) Macroinstability uncovered in a rushton turbine stirred tank by means of LES. AIChE J 50(10):2383–2393CrossRefGoogle Scholar
  20. Heitor MV, Moreira ALN (1992) Velocity characteristics of a swirling recirculating flow. Exp Therm Fluid Sci 5:369–380CrossRefGoogle Scholar
  21. Heitor MV, Whitelaw JH (1986) Velocity, temperature, and species characteristics of the flow in a gas-turbine combustor. Combust Flame 64:1–32CrossRefGoogle Scholar
  22. Huang Y, Sung H-G, Hsieh S-Y, Yang V (2003) Large-eddy simulation of combustion dynamics of lean-premixed swirl-stabilized combustor. J Propul Power 19(5):782–794Google Scholar
  23. Jeong J, Hussain F (1995) On the identification of a vortex. J Fluid Mech 285:69–94MATHCrossRefMathSciNetGoogle Scholar
  24. Jiang M, Machiraju R, Thompson DS (2003) In: Johnson CR, Hansen CD (eds) Detection and visualization of vortices, visualization handbook. Academic, LondonGoogle Scholar
  25. Kollmann W, Ooi ASH, Chong MS, Soria J (2001) Direct numerical simulations of vortex breakdown in swirling jets. J Turb 2-005 (http://jot.iop.org/)
  26. Labbé R, Pinton J-F, Fauve S (1996) Study of the von Karman flow between coaxial corotating disks. Phys Fluids 8(4):914–922CrossRefGoogle Scholar
  27. Levy Y, Degani D, Seginer A (1990) Graphical visualization of vortical flows by means of helicity. AIAA J 28(8):1347–1352CrossRefGoogle Scholar
  28. Liang H, Maxworthy T (2005) An experimental investigation of swirling jets. J Fluid Mech 525:115–159MATHCrossRefGoogle Scholar
  29. Loiseleux T, Chomaz J-M (2003) Breaking of rotational symmetry in a swirling jet experiment. Phys Fluids 15(2):511–523CrossRefMathSciNetGoogle Scholar
  30. Lucca-Negro O, O’Doherty T (2001) Vortex breakdown: a review. Prog Energy Combust Sc 27:431–481CrossRefGoogle Scholar
  31. Meunier P, Leweke T (2001) Three-dimensional instability during vortex merging. Phys Fluids 13(10):2747–2750CrossRefGoogle Scholar
  32. Montgomery MT, Vladimirov VA, Denisenko PV (2002) An experimental study on hurricane mesovortices. J Fluid Mech 471:1–32MATHCrossRefGoogle Scholar
  33. Nicolet C, Arpe J, Avellan F (2004) Identification and modeling of pressure fluctuations of a francis turbine scale model at part load operation. In: 22nd IAHR symposium on hydraulic machinery and systems, Stockholm, SwedenGoogle Scholar
  34. Okulov VL, Fukumoto Y (2004) Helical Dipole. Doklady Phys 49(11):662–667CrossRefGoogle Scholar
  35. Panda J, McLaughlin DK (1994) Experiments on the instabilities of a swirling jet. Phys Fluids 6(1):263–276CrossRefGoogle Scholar
  36. Ruith MR, Chen P, Meiburg E, Maxworthy T (2003) Three-dimensional vortex breakdown in swirling jets and wakes: direct numerical simulation. J Fluid Mech 486:331–378MATHCrossRefMathSciNetGoogle Scholar
  37. Schram C, Rambaud P, Riethmuller ML (2004) Wavelet based eddy structure eduction from a backward facing step flow investigated using particle image velocimetry. Exp Fluids 36:233–245CrossRefGoogle Scholar
  38. Selle L, Lartigue G, Poinsot T, Koch R, Schildmacher K-U, Krebs W, Prade B, Kaufmann P, Veynante D (2004) Compressible large eddy simulation of turbulent combustion in complex geometry on unstructured meshes. Combust Flame 137:489–505CrossRefGoogle Scholar
  39. Syred N, Beer JM (1972) The damping of precessing vortex cores by combustion in swirl generators. Astronautica Acta 17:783–801Google Scholar
  40. Syred N, Wong C, Rodriquez-Martinez V, Dawson J, Kelso R (2004) Characterisation of the occurrence of the precessing vortex core in partially premixed and non-premixed swirling flow. In: Proceedings of the 12th international symposium on applications of laser techniques to fluid mechanics, LisbonGoogle Scholar
  41. Vonnegut B (1954) A vortex whistle. J Acoust Soc Am 26:18–20CrossRefGoogle Scholar
  42. Wang P, Bai XS, Wessman M, Klingmann J (2004) Large eddy simulation and experimental studies of a confined turbulent swirling flow. Phys Fluids 16(9):3306–3324CrossRefGoogle Scholar
  43. Wegner B, Maltsev A, Schneider C, Sadiki A, Dreizler A, Janicka J (2004) Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int J Heat Fluid Flow 25:528–536CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • C. E. Cala
    • 1
  • E. C. Fernandes
    • 1
  • M. V. Heitor
    • 1
  • S. I. Shtork
    • 1
    • 2
  1. 1.Laboratory of Thermofluids, Combustion and Energy Systems, Center for Innovation, Technology and Policy Research IN+, Department of Mechanical EngineeringInstituto Superior TécnicoLisbonPortugal
  2. 2.Institute of Thermophysics SB RASNovosibirskRussia

Personalised recommendations