Experiments in Fluids

, Volume 40, Issue 1, pp 80–97 | Cite as

Fluid experimental flow estimation based on an optical-flow scheme

  • T. CorpettiEmail author
  • D. Heitz
  • G. Arroyo
  • E. Mémin
  • A. Santa-Cruz
Research Article


We present in this paper a novel approach dedicated to the measurement of velocity in fluid experimental flows through image sequences. Unlike most of the methods based on particle image velocimetry (PIV) approaches used in that context, the proposed technique is an extension of “optical-flow” schemes used in the computer vision community, which includes a specific enhancement for fluid mechanics applications. The method we propose enables to provide accurate dense motion fields. It includes an image based integrated version of the continuity equation. This model is associated to a regularization functional, which preserve divergence and vorticity blobs of the motion field. The method was applied on synthetic images and on real experiments carried out to allow a thorough comparison with a state-of-the-art PIV method in conditions of strong local free shear.


Fluid motion measurement Continuity equation Div–curl regularization Optical-flow PIV 



The authors would like to thank Joel Delville (University of Poitiers, France) and Beatriz Camano (Rio Grande do Sul Federal University, Brazil) for their valuable contribution on mixing layer experiments. The financial support by the Region Bretagne of France under grant no. 20048347, by the French Ministry of Research under grant no. 032593, and by the European Union under grant no. FP6-513663 are gratefully acknowledged.


  1. Adrian R (1991) Particle imaging techniques for experimental fluid mechanics. Annal Rev Fluid Mech 23:261–304Google Scholar
  2. Amini A (1994) A scalar function formulation for optical flow. In: Proceedings Europ Conf Computer Vision, pp 125–131Google Scholar
  3. Bannehr L, Rohn R, Warnecke G (1996) A functional analytic method to derive displacement vector fields from satellite image sequences. Int J Remote Sensing 17(2):383–392CrossRefGoogle Scholar
  4. Barron J, Fleet D, Beauchemin S (1994) Performance of optical flow techniques. Int J Comput Vision 12(1):43–77CrossRefGoogle Scholar
  5. Béréziat D, Herlin I, Younes L (2000) A generalized optical flow constraint and its physical interpretation. In: Proceedings Conf Comp Vision Pattern Rec, vol 2, pp 487–492, Hilton Head Island, South Carolina, USA, 2000Google Scholar
  6. Black M (1994) Recursive non-linear estimation of discontinuous flow fields. In: Proceedings Europ Conf Computer Vision, pp 138–145, Stockholm, Sweden, 1994Google Scholar
  7. Black M, Rangarajan A (1996) On the unification of line processes, outlier rejection, and robust statistics with applications in early vision. Int J Comput Vision 19(1):75–104CrossRefGoogle Scholar
  8. Bloor MS, Gerrard JH (1966) Measurements on turbulent vortices in a cylinder wake. Proc R Soc Lond 294:319–342Google Scholar
  9. Cohen I, Herlin I (1999) Non uniform multiresolution method for optical flow and phase portrait models: environmental applications. Int J Comput Vision 33(1):29–49CrossRefGoogle Scholar
  10. Corpetti T, Mémin E, Pérez P (2002) Dense estimation of fluid flows. IEEE Trans Pattern Anal Mach Intell 24(3):365–380CrossRefGoogle Scholar
  11. Fitzpatrick JM (1988) The existence of geometrical density-image transformations corresponding to object motion. Comput Vision Graph Image Proc 44(2):155–174CrossRefMathSciNetGoogle Scholar
  12. Geman D, Reynolds G (1992) Constrained restoration and the recovery of discontinuities. IEEE Trans Pattern Anal Mach Intell 14(3):367–383CrossRefGoogle Scholar
  13. Gupta S, Prince J (1996) Stochastic models for div-curl optical flow methods. Signal Proc Lett 3(2):32–34CrossRefGoogle Scholar
  14. Heitz D (1999) Etude expérimentale du sillage d’un barreau cylindrique se développant dans une couche de mélange plane turbulente. PhD thesis, Université de Poitiers, 1999Google Scholar
  15. Holland P, Welsch R (1977) Robust regression using iteratively reweighted least-squares. Commun Statis Theor Meth A6(9):813–827CrossRefGoogle Scholar
  16. Horn B, Schunck B (1981) Determining optical flow. Artif Intell 17:185–203CrossRefGoogle Scholar
  17. Huber P (1981) Robust statistics. Wiley, New YorkzbMATHGoogle Scholar
  18. Kornprobst P, Deriche R, Aubert G (1999) Image sequence analysis via partial differential equations. J Math Imaging Vis 11(1):5–26CrossRefMathSciNetGoogle Scholar
  19. Larsen R, Conradsen K, Ersboll BK (1998) Estimation of dense image flow fields in fluids. IEEE Trans Geosci Remote sensing 36(1):256–264CrossRefGoogle Scholar
  20. Lecuona A, Ruiz-Rivas U, Rodriguez-Aumente P (2002) Near field vortex dynamics in axially forced, co-flowing jets: quantitative description of a low-frequency configuration. Euro J Mech B/Fluid 21:701–720CrossRefzbMATHMathSciNetGoogle Scholar
  21. Lourenco L, Krothapalli A (1995) On the accuracy of velocity and vorticity measurements with piv. Exp Fluid 18:421–428CrossRefGoogle Scholar
  22. Lourenco L, Krothapalli A (2000) True resolution piv: a mesh-free second-order accurate algoritm. In: 10th International symposium on applications of laser techniques in fluid mechanics, Lisbon, Portugal, July 2000Google Scholar
  23. McKenna SP, McGillis WR (2002) Performance of digital image velocimetry processing techniques. Exp Fluid 32:106–115CrossRefGoogle Scholar
  24. Mémin E, Pérez P (1998) Dense estimation and object-based segmentation of the optical flow with robust techniques. IEEE Trans Image Process 7(5):703–719CrossRefGoogle Scholar
  25. Mémin E, Pérez P (1998) A multigrid approach for hierarchical motion estimation. In: Proceedings of international conference on computer vision, pp 933–938, Bombay, IndiaGoogle Scholar
  26. Mémin E, Pérez P (1999) Fluid motion recovery by coupling dense and parametric motion fields. In: Proceedings of international conference on computer vision, vol 3, pp 732–736, Corfou, GreeceGoogle Scholar
  27. Mémin E, Pérez P (2002) Hierarchical estimation and segmentation of dense motion fields. Int J Comput Vision 46(2):129–155CrossRefzbMATHGoogle Scholar
  28. Nogueira J, Lecuona A, Rodriguez PA (2001) Identification of a new source of peak locking, analysis and its removal in conventional and super-resolution PIV techniques. Exp Fluid 30:309–316CrossRefGoogle Scholar
  29. Nomura A, Miike H, Koga K (1991) Field theory approach for determining optical flow. Pattern Recogn Lett 12(3):183–190CrossRefGoogle Scholar
  30. Okamoto K, Nishio S, Saga T, Kobayashi T (2000) Standard images for PIV. MST 11, pp 685–691Google Scholar
  31. Quénot GM (1999) Performance evaluation of an optical flow technique applied to PIV using the VSJ standard images. In: 3rd International workshop on PIV, pp 579–584Google Scholar
  32. Quénot GM, Pakleza J, Kowalewski A (1998) Particle image velocimetry with optical flow. Exp Fluid 25(3):177–189CrossRefGoogle Scholar
  33. Raffel M, Willert C, Kompenhans J (2000) Particle image velocimetry. Springer, Berlin Heidelberg New YorkGoogle Scholar
  34. Ruhnau P, Kohlberger T, Schnörr C, Nobach H (2005) Variational optical flow estimation for particle image velocimetry. Exp Fluids, pp 21–32Google Scholar
  35. Scarano F, Reithmuller LM (2000) Advances in iterative multigrid piv image processing. Exp Fluids [Suppl]:S51–S60Google Scholar
  36. Schunk BG (1984) The motion constraint equation for optical flow. In: Proceedings Int Conf Pattern Recognition, pp 20–22, MontrealGoogle Scholar
  37. Song SM, Leahy RM (1991) Computation of 3D velocity fields from 3D cine and CT images of human heart. IEEE Trans Med Imaging 10(3):295–306CrossRefGoogle Scholar
  38. Suter D (1994) Motion estimation and vector splines. In: Proceedings Conf Comp Vision Pattern Rec, pp 939–942, Seattle, USA, June 1994Google Scholar
  39. Wallace J, Foss J (1995) The measurement of vorticity in turbulent flows. Annu Rev Fluid Mech 27:469–514CrossRefGoogle Scholar
  40. Wereley ST, Meinhart CD (2001) Second-order accurate particule image velocimetry. Exp Fluid 31:258–268CrossRefGoogle Scholar
  41. Wernert P, Geissler W, Raffel M, Kompenhans J (1996) Experimental and numerical investigations of dynamic stall on a pitching airfoil. AIAA J 34(5):982–989CrossRefGoogle Scholar
  42. Wildes R, Amabile M, Lanzillotto AM, Leu TS (1997) Physically based fluid flow recovery from image sequences. In: Proceedings Conf Comp Vision Pattern Rec, pp 969–975Google Scholar
  43. Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluid 10:181–193CrossRefGoogle Scholar
  44. Zhou L, Kambhamettu C, Goldgof D (2000) Fluid structure and motion analysis from multi-spectrum 2D cloud images sequences. In: Proceedings Conf Comp Vision Pattern Rec, vol 2, pp 744–751, Hilton Head Island, South Carolina, USA, 2000Google Scholar

Copyright information

© Springer-Verlag 2005

Authors and Affiliations

  • T. Corpetti
    • 1
    • 3
    Email author
  • D. Heitz
    • 1
  • G. Arroyo
    • 1
  • E. Mémin
    • 2
  • A. Santa-Cruz
    • 1
  1. 1.avenue de CucilléRennes CedexFrance
  2. 2.IRISA/INRIA CampusUniversitaire de BeaulieuRennes CedexFrance
  3. 3.Laboratoire COSTEL UMR 6554 LETGMaison de la RechercheRennes CedexFrance

Personalised recommendations