Experiments in Fluids

, Volume 37, Issue 6, pp 811–824

Near-wall hindered Brownian diffusion of nanoparticles examined by three-dimensional ratiometric total internal reflection fluorescence microscopy (3-D R-TIRFM)



A three-dimensional nanoparticle tracking technique using ratiometric total internal reflection fluorescence microscopy (R-TIRFM) is presented to experimentally examine the classic theory on the near-wall hindered Brownian diffusive motion. An evanescent wave field from the total internal reflection of a 488-nm bandwidth argon-ion laser is used to provide a thin illumination field on the order of a few hundred nanometers from the wall. Fluorescence-coated polystyrene spheres of 200±20 nm diameter (specific gravity=1.05) are used as tracers and a novel ratiometric analysis of their images allows the determination of fully three-dimensional particle locations and velocities. The experimental results show good agreement with the lateral hindrance theory, but show discrepancies from the normal hindrance theory. It is conjectured that the discrepancies can be attributed to the additional hindering effects, including electrostatic and electro-osmotic interactions between the negatively charged tracer particles and the glass surface.


  1. Axelrod D, Burghardt TP, Thompson NL (1984) Total internal reflection fluorescence (in biophysics). Annu Rev Biophys Bio 13:247–268Google Scholar
  2. Axelrod D, Hellen EH, Fulbright RM (1992) Total internal reflection fluorescence. In: Lakowicz J (ed) Topics in fluorescence spectroscopy: principles and applications, vol 3: biochemical applications. Plenum Press, New York, pp 289–343Google Scholar
  3. Banerjee A, Chon C, Kihm KD (2003) Nanoparticle tracking using TIRFM imaging. In: Photogallery of the ASME international mechanical engineering congress and exposition (IMECE 2003), Washington, DC, November 2003Google Scholar
  4. Batchelor GK (1975) Brownian diffusion of particles with hydrodynamic interaction. J Fluid Mech 74:1-29Google Scholar
  5. Bevan MA, Prieve DC (2000) Hindered diffusion of colloidal particles very near to a wall: revisited. J Chem Phys 113(3):1228–1236CrossRefGoogle Scholar
  6. Born M, Wolf E (1980) Principles of optics, 6th edn. Cambridge University Press, Cambridge, pp 47–51Google Scholar
  7. Brenner H (1961) The slow motion of a sphere through a viscous fluid towards a plane surface. Chem Eng Sci 16:242–251CrossRefGoogle Scholar
  8. Brown R (1828) A brief account of microscopical observations made in the months of June, July, and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies. Phil Mag 4:161–173Google Scholar
  9. Burghart TP, Thompson NL (1984) Effects of planar dielectric interfaces on fluorescence emission and detection. Biophys J 46:729–737PubMedGoogle Scholar
  10. Deen WM (1998) Analysis of transport phenomena. Oxford University Press, New York, pp 59–63Google Scholar
  11. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248:73–76PubMedGoogle Scholar
  12. Dufresne ER, Squires TM, Brenner MP, Grier DG (2000) Hydrodynamic coupling of two Brownian spheres to a planar surface. Phys Rev Lett 85:3317–3320CrossRefPubMedGoogle Scholar
  13. Einstein A (1905) Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen. Ann Physik 17: 549Google Scholar
  14. Einstein A (1956) Investigations on the theory of Brownian movement. Dover, New YorkGoogle Scholar
  15. Fox RW, McDonald AT, Pritchard PJ (2004) Introduction to fluid mechanics, 6th edn. Wiley, Hoboken, New Jersey, pp 755–761Google Scholar
  16. Goldman AJ, Cox RG, Brenner H (1967) Slow viscous motion of a sphere parallel to a plane. I: motion through a quiescent fluid. Chem Eng Sci 22:637–651CrossRefGoogle Scholar
  17. Goos VF, Hanchen H (1947) Ein neuer und fundamentaler versuch zur totalreflexion. Ann Physik 1:333–346Google Scholar
  18. Hecht E (2002) Optics, 4th edn. Addison-Wesley, Reading, Massachusetts, pp 124–127Google Scholar
  19. Hellen EH, Axelrod D (1986) Fluorescence emission at dielectric and metal film interfaces. J Opt Soc Am B 4:337–350Google Scholar
  20. Hosoda M, Sakai K, Takagi K (1998) Measurement of anisotropic Brownian motion near an interface by evanescent light-scattering spectroscopy. Phys Rev E 58(5):6275–6280CrossRefGoogle Scholar
  21. Ingenhousz J (1779) Experiments on vegetables, discovering their great power of purifying the common air in sunshine, and of injuring it in the shade or at night. In: Marshall HL, Herbert SK (1952) A source book in chemistry: 1400–1900. Harvard University Press, Cambridge, MassachusettsGoogle Scholar
  22. Inoue S (1987) Video microscopy. Plenum Press, New YorkGoogle Scholar
  23. Ishijima A, Yanagida T (2001) Single molecule nanobioscience. Trends in Biochem Sci 26:438–444CrossRefGoogle Scholar
  24. Jin S, Huang P, Park J, Yoo JY, Breuer KS (2003) Near-surface velocimetry using evanescent wave illumination. In: Proceedings of the ASME international mechanical engineering congress and exposition (IMECE 2003), Washington, DC, November 2003, paper 44015Google Scholar
  25. Kim MJ, Beskok A, Kihm KD (2002) Electro-osmosis-driven micro-channel flows: a comparative study of microscopic particle image velocimetry measurements and numerical simulations. Exp Fluids 33:170–180Google Scholar
  26. Kim S, Karrila SJ (1991) Microhydrodynamics: principles and selected applications. Butterworth-Heinemann, Stoineham, MassachusettsGoogle Scholar
  27. Kline SJ, McClintock FA (1953) Describing uncertainties in single-sample experiments. Mech Eng 75(1): 3–9Google Scholar
  28. Kohonen T (1995) Self-organizing maps. Springer, Berlin Heidelberg, New YorkGoogle Scholar
  29. Kohonen T, Kaski S, Lappalainen H (1994) Self-organized formation of various invariant-feature filters in the adaptive subspace SOM. Neural Comput 9:1321–44Google Scholar
  30. de Lange F, Cambi A, Huijbens R, de Bakker B, Rensen W, Garcia-Parajo M, van Hulst N, Figor CG (2001) Cell biology beyond the diffraction limit: near-field scanning optical microscopy. J Cell Sci 114:4153–4160PubMedGoogle Scholar
  31. Meiners J-C, Quake SR (1999) Direct measurement of hydrodynamic cross correlations between two particles in an external potential. Phys Rev Lett 82(10):2211–2214CrossRefGoogle Scholar
  32. Molecular Probes (2004) Personal communications, Molecular Probes Inc., Eugene, OregonGoogle Scholar
  33. Nakroshis P, Amoroso M, Legere J, Smith C (2003) Measuring Boltzmann’s constant using video microscopy of Brownian motion. Am J Phys 71(6):568–573CrossRefGoogle Scholar
  34. Okamoto K, Hassan YA, Schmidl WD (1995) New tracking algorithm for particle image velocimetry. Exp Fluids 19:342–347CrossRefGoogle Scholar
  35. Okamoto K, Nishio S, Kobayashi T, Saga T (1997) Standard images for particle imaging velocimetry. In: Proceedings of the 2nd international workshop on particle image velocimetry (PIV’97), Fukui, Japan, July 1997, pp 229–236Google Scholar
  36. Park JW, Choi CK, Kihm KD (2004) Optically slices micro-PIV using confocal laser scanning microscopy (CLSM). Exp Fluids 37:105–119CrossRefGoogle Scholar
  37. Pawley JB (1995) Handbook of biological confocal microscopy, 2nd edn. Plenum Press, New YorkGoogle Scholar
  38. Prieve DC (1999) Measurement of colloidal forces with TIRM. Adv Colloid Interfac 82:93–125CrossRefGoogle Scholar
  39. Probstein RF (1994) Physicochemical hydrodynamics. Wiley, New YorkGoogle Scholar
  40. Rohrbach A (2000) Observing secretory granules with a multiangle evanescent wave microscope. Biophys J 78:2641–2654PubMedGoogle Scholar
  41. Sako Y, Minoghchi S, Uyemura T (2000) Single-molecule imaging of EGFR signaling on the surface of living cells. Nat Cell Biol 2:168–172CrossRefPubMedGoogle Scholar
  42. Sako Y, Yanagida T (2003) Single-molecule visualization in cell biology. Nat Rev Mol Cell Bio September supplement SS1-SS5Google Scholar
  43. Salmon R, Robbins C, Forinash K (2002) Brownian motion using video capture. Eur J Phys 23(3):235-253CrossRefGoogle Scholar
  44. Schatzel K, Neumann WG, Muller J, Materzok B (1992) Optical tracking of Brownian particles. Appl Optics 31:770–778Google Scholar
  45. Shlesinger MF, Klafter J, Zumofen G (1999) Above, below and beyond Brownian motion. Am J Phys 67:1253–1259CrossRefGoogle Scholar
  46. Stelzer EHK, Lindek S (1994) Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy. Opt Commun 111:536–547CrossRefGoogle Scholar
  47. Takagi T, Okamoto K (2001) Particle tracking velocimetry by network model. In: Proceedings of the 3rd Pacific symposium on flow visualization and image processing (PSFVIP-3), Maui, Hawaii, March, conference CD-ROMGoogle Scholar
  48. Weiss S (2000) Measuring conformational dynamics of biomolecules by single molecule fluorescence spectroscopy. Nat Struct Biol 7:724–729CrossRefPubMedGoogle Scholar
  49. Xie S (2001) Single-molecule approach to enzymology. Single Mol 2:229–236CrossRefGoogle Scholar
  50. Zettner CM, Yoda M (2003) Particle velocity field measurements in a near-wall flow using evanescent wave illumination. Exp Fluids 34:115–121Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • K. D. Kihm
    • 1
  • A. Banerjee
    • 2
  • C. K. Choi
    • 1
  • T. Takagi
    • 3
  1. 1.Micro/Nano-Scale Fluidics and Energy Transport (MINSFET) Laboratory, Mechanical, Aerospace and Biomedical Engineering DepartmentUniversity of TennesseeKnoxvilleUSA
  2. 2.Department of Mechanical EngineeringTexas A&M UniversityUSA
  3. 3.Department of Electrical EngineeringKushiro National College of TechnologyKushiroJapan

Personalised recommendations