Experiments in Fluids

, Volume 37, Issue 1, pp 65–74 | Cite as

Multiline hydroxyl tagging velocimetry measurements in reacting and nonreacting experimental flows

  • L. A. Ribarov
  • J. A. Wehrmeyer
  • S. Hu
  • R. W. Pitz
Original

Abstract

A compact micro-lens optical system is developed that produces a 7×7 multi-line optical grid for Hydroxyl Tagging Velocimetry (HTV) and generates at least 49 resolvable velocity vectors. Single-photon photodissociation of ground-state H2O by a ~193-nm ArF excimer laser “writes” a 7×7 beam molecular grid with very long gridlines of superequilibrium OH and H photoproducts in either room air flowfields or in H2-air flames due to the presence of H2O vapor. The displaced OH tag line positions are revealed through fluorescence by A2Σ+ (v′=0)←X2Πi (v″=0) OH excitation using a ~308-nm pulsed frequency-doubled dye laser. Time-of-flight analysis software determines the instantaneous velocity field in either an air nozzle or in a hydrogen/air flame. The OH tag lifetime is measured and compared to theoretical predictions using detailed chemistry. The lifetime of the OH tag is significantly enhanced by the presence of O atoms from 193-nm photodissociation of O2.

Notes

Acknowledgements

The authors gratefully acknowledge the support of NASA-Glenn (grant NAG3–1984, Dr. R. Seasholtz, technical monitor), BMDO-ARO (DURIP award DAAG55–98–1-0197, Dr. D. Mann, technical monitor), and AFOSR (DURIP award F49620–99–1-0120, Dr. J. Tishkoff, technical monitor). The authors thank Arnold Engineering Development Center (AEDC), Tennessee, for use of their ArF excimer laser and for their support under SVERDRUP/AEDC Group Contract No. T01–55. The technical discussions with Dr. B. Wieneke (LaVision, GmbH) regarding some of the initial image processing are gratefully acknowledged.

References

  1. Allen M, Davis S, Kessler W, Legner H, McManus K, Mulhall P, Parker T, Sonnenfroh D (1994) Velocity field imaging in supersonic reacting flows near atmospheric pressure. AIAA J 32:1676–1682Google Scholar
  2. Barker P, Thomas A, Rubinsztein-Dunlop H, Ljungberg P (1995) Velocity measurements by flow tagging employing laser enhanced ionisation and laser induced fluorescence. Spectrochim Acta B 50:1301–1310CrossRefGoogle Scholar
  3. Bass AM, Broida HP (1953) A spectrophotometric atlas of the 2Σ+ - 2Π transition of OH. Natl Bur Stand Circ 541:1–21Google Scholar
  4. Boedeker LR (1989) Velocity measurement by H2O photolysis and laser-induced fluorescence of OH. Opt Lett 14:473–475Google Scholar
  5. Dam N, Klein-Douwel RJH, Sijtsema NM, ter Meulen JJ (2001) Nitric oxide flow tagging in unseeded air. Opt Lett 26:36–38Google Scholar
  6. Danehy PM, O’Byrne S, Houwing AFP, Fox JS, Smith DR (2003) Flow-tagging velocimetry for hypersonic flows using fluorescence of nitric oxide. AIAA J 41:263–271Google Scholar
  7. Davidson DF, Chang AY, Kohse-Höinghaus K, Hanson RK (1989) High temperature absorption coefficients of O2, NH3, and H2O for broadband ArF excimer laser radiation. J Quant Spectrosc Radiat Transfer 42:267–278CrossRefGoogle Scholar
  8. Davidson DF, Chang AY, DiRosa MD, Hanson RK (1991) Continuous wave laser absorption techniques for gasdynamic measurements in supersonic flows. Appl Opt 30:2598–2608Google Scholar
  9. Dieke GH, Crosswhite HM (1962) The ultraviolet bands of OH (fundamental data). J Quant Spectrosc Radiat Transfer 2:97–199CrossRefGoogle Scholar
  10. Eckbreth AC (1996) Laser diagnostics for combustion temperature and species. Gordon & Breach, AmsterdamGoogle Scholar
  11. Engel V, Meijer G, Bath A, Andresen P, Schinke R (1987) The \( {\text{ \ifmmode\expandafter\tilde\else\expandafter\~\fi{C}}} \) → Ã emission in water: theory and experiment. J Chem Phys 87:4310–4314CrossRefGoogle Scholar
  12. Fincham A, Delerce G (2000) Advanced optimization of correlation imaging velocimetry algorithms. Exp Fluids 29:S13–22CrossRefGoogle Scholar
  13. Finzi J, Hovis FE, Panfilov N, Hess P, Moore CB (1977) Vibrational relaxation of water vapor. J Chem Phys 67:4053–4061CrossRefGoogle Scholar
  14. Forkey JN, Finkelstein ND, Lempert WR, Miles RB (1996) Demonstration and characterization of filtered Rayleigh scattering for planar velocity measurements. AIAA J 34:442–448Google Scholar
  15. Gendrich CP, Koochesfahani MM (1996) A spatial technique for estimating velocity fields using molecular tagging velocimetry (MTV). Exp Fluids 22:67–77Google Scholar
  16. Gomez A, Rosner DE (1993) Thermophoretic effects on particles in counterflow laminar diffusion flames. Combust Sci Technol 89:335–362Google Scholar
  17. Hiller B, Booman RA, Hassa C, Hanson RK (1984) Velocity visualization in gas flows using laser-induced phosphorescence of biacetyl. Rev Sci Instrum 55:1964–1967Google Scholar
  18. Klavuhn KG, Gauba G, McDaniel JC (1994) OH laser-induced fluorescence velocimetry technique for steady, high-speed, reacting flows. J Propul Power 10:787–797Google Scholar
  19. Krüger S, Grünefeld G (1999) Stereoscopic flow-tagging velocimetry. Appl Phys B 69:509–512CrossRefGoogle Scholar
  20. Lempert WR, Jiang N, Sethuram S, Samimy M (2002) Molecular tagging velocimetry measurements in supersonic microjets. AIAA J 40:1065–1070Google Scholar
  21. Lutz AE, Kee RJ, Miller JA (1988) SENKIN: A Fortran program for predicting homogeneous gas phase chemical kinetics with sensitivity analysis. In: Sandia Report: SAND87–8248·UC-4. Sandia National Laboratories, Livermore, CAGoogle Scholar
  22. Marinelli WJ, Kessler WJ, Allen MG, Davis SJ, Arepalli S (1991) Copper atom based measurements of velocity in turbulence and in arc jet flows. AIAA Paper 91–0358, 29th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NVGoogle Scholar
  23. Massey GA, Lemon CJ (1984) Feasibility of measuring temperature and density fluctuations in air using laser-induced O2 fluorescence. IEEE J Quantum Electron 20:454–457Google Scholar
  24. Maurice MS (1992) Laser velocimetry seed particles within compressible, vortical flows. AIAA J 30:376–383Google Scholar
  25. Measures RM (1968) Selective excitation spectroscopy and some possible applications. J Appl Phys 39:5232–5245CrossRefGoogle Scholar
  26. McDaniel JC, Hiller B, Hanson RK (1983) Simultaneous multiple-point velocity measurements using laser-induced iodine fluorescence. Opt Lett 8:51–53Google Scholar
  27. Miles RB, Lempert WR (1997) Quantitative flow visualization in unseeded flows. Annu Rev Fluid Mech 29:285–326CrossRefGoogle Scholar
  28. Noullez A, Wallace G, Lempert W, Miles RB, Frisch U (1997) Transverse velocity increments in turbulent flow using the RELIEF technique. J Fluid Mech 339:287–307CrossRefGoogle Scholar
  29. Okabe H (1978) Photochemistry of small molecules. Wiley, New YorkGoogle Scholar
  30. Orlemann C, Schulz C, Wolfrum J (1999) NO-flow tagging by photodissociation of NO2. A new approach for measuring small-scale flow structures. Chem Phys Lett 307:15–20CrossRefGoogle Scholar
  31. Paul PH, Lee MP, Hanson RK (1989) Molecular velocity imaging of supersonic flows using pulsed planar laser-induced fluorescence of NO. Opt Lett 14:417–419Google Scholar
  32. Pitz RW, Brown TM, Nandula SP, Skaggs PA, DeBarber PA, Brown MS, Segall J (1996) Unseeded velocity measurement by ozone tagging velocimetry. Opt Lett 21:755–757Google Scholar
  33. Pitz RW, Wehrmeyer JA, Ribarov LA, Oguss DA, Batliwala F, DeBarber PA, Deusch S, Dimotakis PE (2000) Unseeded molecular flow tagging in cold and hot flows using ozone and hydroxyl tagging velocimetry. Meas Sci Technol 11:1259–1271CrossRefGoogle Scholar
  34. Ribarov LA, Wehrmeyer JA, Batliwala F, Pitz RW, DeBarber PA (1999) Ozone tagging velocimetry using narrowband excimer lasers. AIAA J 37:708–714Google Scholar
  35. Ribarov LA, Wehrmeyer JA, Pitz RW, Yetter RA (2002) Hydroxyl tagging velocimetry (HTV) in experimental air flows. Appl Phys B 74:175–183CrossRefGoogle Scholar
  36. Rubinsztein-Dunlop H, Littleton B, Barker P, Ljungberg P, Malmsten Y (2001) Ionic strontium fluorescence as a method of flow tagging velocimetry. Exp Fluids 30:36–42CrossRefGoogle Scholar
  37. Samimy M, Wernet MP (2000) Review of planar multiple-component velocimetry in high-speed flows. AIAA J 38:553–574Google Scholar
  38. Santoro RJ, Pal S, Woodward RD, Schaaf L (2001) Rocket testing at university facilities. AIAA Paper 2001–0748, 39th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NVGoogle Scholar
  39. Scarano F, Reithmuller ML (2000) Advances in iterative multigrid PIV image processing. Exp Fluids 29:51–60CrossRefGoogle Scholar
  40. Schulz C, Koch JD, Davidson DF, Jeffries JB, Hanson RK (2002a) Ultraviolet absorption spectra of shock-heated carbon dioxide and water between 900 and 3050 K. Chem Phys Lett 355:82–88CrossRefGoogle Scholar
  41. Schulz C, Jeffries JB, Davidson DF, Koch JD, Wolfrum J, Hanson RK (2002b) Impact of UV absorption by CO2 and H2O on NO LIF in high-pressure combustion applications. Proc Comb Inst 29:2735–2742Google Scholar
  42. Seasholtz RG, Zupanc FJ, Schneider SJ (1992) Spectrally resolved Rayleigh scattering diagnostic for hydrogen-oxygen rocket plume studies. J Propul Power 8:935–942Google Scholar
  43. Seitzman JM, Hanson RK (1993) Comparison of excitation techniques for quantitative fluorescence imaging of reacting flows. AIAA J 31:513–519Google Scholar
  44. Smith MS, Price LL, Williams WD (1993) Laser-induced fluorescence diagnostics using a two-line excitation method. AIAA J 31:478–482Google Scholar
  45. Stier B, Koochesfahani MM (1999) Molecular tagging velocimetry (MTV) measurements in gas phase flows. Exp Fluids 26:297–304CrossRefGoogle Scholar
  46. Sung CJ, Law CK, Axelbaum RL (1994) Thermophoretic effects on seeding particles in LDV measurements of flames. Combust Sci Technol 99:119–132Google Scholar
  47. Talbot L, Cheng RK, Schefer RW, Willis DR (1980) Thermophoresis of particles in a heated boundary layer. J Fluid Mech 101:737–758Google Scholar
  48. van der Laan WPN, Tolboom RAL, Dam NJ, ter Meulen JJ (2003) Molecular tagging velocimetry in the wake of an object in supersonic flow. Exp Fluids 34:531–533Google Scholar
  49. van Harrevelt R, van Hemert MC (2001) Photodissociation of water in the à band revisited with new potential energy surfaces. J Chem Phys 114:9453–9462CrossRefGoogle Scholar
  50. Wehrmeyer JA, Ribarov LA, Oguss DA, Pitz RW (1999a) Flame flow tagging velocimetry with 193-nm H2O photodissociation. Appl Opt 38:6912–6917Google Scholar
  51. Wehrmeyer JA, Ribarov LA, Oguss DA, Batliwala F, Pitz RW, DeBarber PA (1999b) Flow tagging velocimetry for low and high temperature flowfields. AIAA paper 99–0646, 37th AIAA aerospace sciences meeting and exhibit, Reno, NV, January 11–14Google Scholar
  52. Wodtke AM, Huwel L, Schlüter H, Voges H, Meijer G, Andresen P (1988) Predissociation of O2 in the B state. J Chem Phys 89:1929–1935CrossRefGoogle Scholar
  53. Zimmermann M, Miles RB (1980) Hypersonic-helium-flow-field measurements with the resonant Doppler velocimeter. Appl Phys Lett 37:885–887CrossRefGoogle Scholar
  54. Zittel PF, Masturzo DE (1989) Vibrational relaxation of H2O from 295 to 1020 K. J Chem Phys 90:977–989CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • L. A. Ribarov
    • 1
    • 2
  • J. A. Wehrmeyer
    • 1
  • S. Hu
    • 1
  • R. W. Pitz
    • 1
  1. 1.Department of Mechanical EngineeringVanderbilt UniversityNashvilleUSA
  2. 2.Aero-Thermodynamics GroupUnited Technologies Research CenterEast HartfordUSA

Personalised recommendations