Experiments in Fluids

, Volume 36, Issue 2, pp 259–267 | Cite as

Simultaneous PLIF/PIV investigation of vortex-induced annular extinction in H2-air counterflow diffusion flames

  • T. R. Meyer
  • G. J. Fiechtner
  • S. P. Gogineni
  • J. C. Rolon
  • C. D. Carter
  • J. R. Gord
Original

Abstract

High-temporal-resolution measurements of scalars and velocity are used to study vortex-induced annular (off-centerline) flame extinction during the interaction of a propagating vortex with an initially stationary counterflow hydrogen-air diffusion flame. Such an extinction process differs from classical one-dimensional descriptions of strained flamelets in that it captures the effects of flame curvature as well as dynamic strain. Planar laser-induced fluorescence (PLIF) measurements of the hydroxyl radical (OH) are used to track flame development, and simultaneous particle-image velocimetry (PIV) is used to characterize the two-dimensional flowfield. Measurements reveal differences in local normal strain rate profiles along and across the reaction zone and indicate that vortex-induced curvature in the annular region may initiate the extinction process. In addition, the effect of local flame extinction on vortex evolution and dissipation is determined from measured vorticity data.

Keywords

Counterflow Vortex Flame Extinction Diffusion flame 

References

  1. Ashurst WT (1993) Combust Sci Technol 92:87Google Scholar
  2. Croonenbroek T (1996) PhD Thesis, Laboratoire E.M2.C, CNRS and École Centrale ParisGoogle Scholar
  3. Donbar JM, Driscoll JF, Carter CD (2001) Combust Flame 125(4):1239–1257Google Scholar
  4. Driscoll JF, Sutkus DJ, Roberts WML, Post ME, Goss LP (1994) Combust Sci Technol 96:213–229Google Scholar
  5. Eckbreth AC (1996) Laser diagnostics for combustion temperature and species, 2nd edn. Gordon and Breach, The NetherlandsGoogle Scholar
  6. Fiechtner GJ, Carter CD, Grinstead KD, Gord JR, Roquemore WM, Rolon JC (1998) Flame-vortex interactions in a non-premixed H2/N2/air counterflow burner. AIAA Paper 98-3770Google Scholar
  7. Fiechtner GJ, Carter CD, Katta VR, Gord JR, Donbar JM, Rolon JC (1999) Regimes of interaction between a non-premixed hydrogen-air flame and an isolated vortex. AIAA Paper 99-0320Google Scholar
  8. Fiechtner GJ, Katta VR, Carter CD, Gord JR, Roquemore WM, Rolon JC (2000a) J Visual-Japan 3(2):96Google Scholar
  9. Fiechtner GJ, Renard PH, Carter CD, Gord JR, Rolon JC (2000b) J Visual-Japan 2(3/4):331–342Google Scholar
  10. Frank JH, Lyons KM, Long MB (1996) Combust Flame 107:1–12Google Scholar
  11. Garside JE, Hall AR, Towsend DTA (1943) Nature 152:748Google Scholar
  12. Gharib M, Rambod E, Shariff K (1998) J Fluid Mech 360:121–140Google Scholar
  13. Gogineni S, Goss L, Pestian D, Rivir R (1998) Exp Fluids 25:320–328CrossRefGoogle Scholar
  14. Hasselbrink E (1999) Transverse jets and jet flames: structure, scaling, and effects of heat release. PhD Thesis, Stanford University, Stanford, CAGoogle Scholar
  15. Hasselbrink EF, Mungal MG (1998) P Combust Inst 27:1167–1173Google Scholar
  16. Katta VR, Carter CD, Fiechtner GJ, Roquemore WM, Gord JR, Rolon JC (1998) P Combust Inst 27:587–594Google Scholar
  17. Katta VR, Meyer TR, Gord JR, Roquemore WM (2003) Combust Flame 132:639–651CrossRefGoogle Scholar
  18. Kothnur PS, Tsurikov MS, Clemens NT, Donbar JM, Carter CD (2002) P Combust Inst 29:1921–1927Google Scholar
  19. Lemaire A, Meyer TR, Zähringer K, Rolon JC, Gord JR (2003) Appl Optics 42(12):2063–2071Google Scholar
  20. Mueller CJ, Driscoll JF, Sutkus DJ, Roberts WL, Drake MC, Smooke MD (1995) Combust Flame 100:323–331Google Scholar
  21. Najm HN, Paul PH, Mueller CJ, Wyckoff PS (1998) Combust Flame 113:312–332Google Scholar
  22. Paul PH, Najm HN (1998) P Combust Inst 27:43–50Google Scholar
  23. Poinsot T, Trouve A, Veynante D, Candel S, Esposito E (1987) J Fluid Mech 177:265–292Google Scholar
  24. Raffel M, Willert C, Kompenhans J (1998) Particle image velocimetry: a practical guide. Springer, Berlin Heidelberg New YorkGoogle Scholar
  25. Rehm JE, Clemens NT (1998) P Combust Inst 27:1113–1120Google Scholar
  26. Renard P-H, Rolon JC, Thévenin D, Candel S (1999) Combust Flame 117:189–205CrossRefGoogle Scholar
  27. Renard PH, Thevenin D, Rolon JC, Candel S (2000) Prog Energ Combust 26:225–282Google Scholar
  28. Rolon JC, Aguerre F, and Candel S (1995) Combust Flame 100:422–429CrossRefGoogle Scholar
  29. Rolon JC, Darabiha N, Croonenbroek T, Dagusé Th, Martin JP (1996) Quantitative LIF and Rayleigh measurements of temperature and absolute concentration of OH radical in strained diffusion flames. 8th International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, PortugalGoogle Scholar
  30. Rutland CJ, Ferziger JH (1991) Combust Flame 84:343–360Google Scholar
  31. Samaniego JM, Mantel T (1999) Combust Flame 118:537–556Google Scholar
  32. Shusser M, Gharib M, Mohseni K (1999) A new model for inviscid vortex ring formation. AIAA Paper 99-3805Google Scholar
  33. Sung CJ, Kistler JS, Nishioka M, Law CK (1996) Combust Flame 105:189–201Google Scholar
  34. Thévenin D, Renard PH, Fiechtner GJ, Gord JR, Rolon JC (2000) P Combust Inst 28:2101–2108Google Scholar
  35. Watson KA, Lyons KM, Donbar JM, Carter CD (1999) Combust Flame 117:257–271Google Scholar
  36. Watson KA, Lyons KM, Carter CD, Donbar JM (2002) P Combust Inst 29:1905–1912Google Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • T. R. Meyer
    • 1
  • G. J. Fiechtner
    • 2
  • S. P. Gogineni
    • 1
  • J. C. Rolon
    • 3
  • C. D. Carter
    • 4
  • J. R. Gord
    • 4
  1. 1.Innovative Scientific Solutions, Inc.DaytonU.S.A
  2. 2.Sandia National Laboratories7011 East AvenueLivermoreU.S.A
  3. 3.Laboratoire E.M2.CCNRS/École Centrale ParisParisFrance
  4. 4.Air Force Research Laboratory, Propulsion DirectorateWright-Patterson Air Force BaseU.S.A

Personalised recommendations