Advertisement

Molekulargenetische Untersuchungen als Basis zielgerichteter Therapien beim Basalzellkarzinom am Auge

  • L. BoeckmannEmail author
  • M. C. Martens
  • V. Kakkassery
  • L. M. Heindl
  • S. EmmertEmail author
Leitthema
  • 15 Downloads

Zusammenfassung

Hintergrund

Basalzellkarzinome sind die häufigsten bösartigen Tumoren des Menschen überhaupt. Sie wachsen lokal destruierend und invasiv.

Fragestellung

Die Zunahme von Basalzellkarzinomen in einer alternden Gesellschaft erfordert neue, schonende Therapieansätze gerade für fortgeschrittene, schwer resezierbare, an chirurgisch herausfordernden Lokalisationen wie dem Augenlid wachsende oder metastasierte Basalzellkarzinome.

Material und Methoden

Neue Schlüsseltechnologien wie „next generation sequencing“ (NGS) ermöglichen genetische Analysen von Tumoren in Hochdurchsatzverfahren. Dadurch werden neue Erkenntnisse zur molekulargenetischen Genese von Basalzellkarzinomen erworben, die die Entwicklung neuartiger, zielgerichteter Behandlungen der betroffenen Signalwege ermöglichen.

Ergebnisse

Basalzellkarzinome besitzen entsprechend dem mehrschrittigen Photokarzinogenesemodell eine sehr hohe Last an UV-induzierten Genmutationen (75 %). Unabhängig von der Genese tragen 85 % der Basalzellkarzinome Hedgehog-signalwegaktivierende Mutationen. Mittlerweile sind 2 Hedgehog-Inhibitoren zur Behandlung des schwer resezierbaren bzw. metastasierten Basalzellkarzinoms zugelassen (Vismodegib und Sonidegib). Die Ansprechraten liegen jedoch nur bei 60 % der Patienten. Der Grund hierfür liegt in der hohen Mutationslast der Tumoren. So sind in 85 % der Basalzellkarzinome auch andere Signalwege beeinträchtigt.

Schlussfolgerungen

Molekulargenetische Untersuchungen werden die Identifizierung weiterer zielgerichteter Therapieansätze ermöglichen. Aufgrund der hohen Mutationslast sind auch Checkpoint-Inhibitoren (z. B. Cemiplimab) effektiv. UV-Schutz und Nicotinamid können die Mutationslast verringern und das Basalzellkarzinomrisiko mindern.

Schlüsselwörter

Photokarzinogenese Hedgehog-Inhibitor Checkpoint-Inhibitor Nicotinamid Mutationslast 

Molecular genetic investigations as the basis for targeted treatment of basal cell carcinoma of the eye

Abstract

Background

Basal cell carcinomas are generally the most common malignant human cancers. They grow destructively and invasively into surrounding tissue.

Objective

The rising incidence of basal cell carcinomas in an aging society demands new, less destructive treatment approaches especially for advanced and difficult to resect basal cell carcinomas at surgically demanding locations, such as those growing or metastasizing on the eyelid.

Material and methods

New key technologies, such as next generation sequencing (NGS) enable high-throughput genetic analyses of tumors. In this way new knowledge on the molecular genetic pathogenesis of basal cell carcinomas is gained, which enables the development of new targeted treatment of the affected signal pathway.

Results

In line with the multistep photocarcinogenesis theory, basal cell carcinomas possess a high load of UV-induced gene mutations (75%). Independent of the genesis 85% of basal cell carcinomas harbor activating mutations of the hedgehog signaling pathway. Accordingly, two hedgehog inhibitors for the treatment of difficult to resect or metastasized basal cell carcinomas have been licensed (vismodegib and sonidegib); however, only 60% of patients respond to this treatment. This is due to the high mutational load with 85% of the tumors harboring additional mutations in other signaling pathways.

Conclusion

Molecular genetic analyses will enable the identification of further targeted therapies for advanced basal cell carcinomas. Due to the high mutational load checkpoint inhibitors (e. g. cemiplimab) are also effective in the treatment of basal cell carcinomas. Nicotinamide and UV protection can reduce the mutational load and hence decrease the risk for tumor development.

Keywords

Photocarcinogenesis Hedgehog inhibitor Checkpoint inhibitor Nicotinamide Mutational load  

Notes

Förderung

Die Arbeit wurde zum Teil unterstützt durch OnkoTher-H, EU, ESF/14-BM-A55-0001/18 (S. E.); der Damp Stiftung 2017-05 (S. E.), der Dermatologischen Gesellschaft Mecklenburg-Vorpommern (L. B.) und einem Stipendium der Deutschen Stiftung Dermatologie (M.C. M.).

Einhaltung ethischer Richtlinien

Interessenkonflikt

L. Boeckmann, M.C. Martens, V. Kakkassery, L.M. Heindl und S. Emmert geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Athar M, Li C, Kim AL et al (2014) Sonic hedgehog signaling in basal cell nevus syndrome. Cancer Res 74:4967–4975PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Black HS, deGruijl FR, Forbes PD et al (1997) Photocarcinogenesis: an overview. J Photochem Photobiol B 40:29–47PubMedCrossRefGoogle Scholar
  3. 3.
    Bonilla X, Parmentier L, King B et al (2016) Genomic analysis identifies new drivers and progression pathways in skin basal cell carcinoma. Nat Genet 48(4):398–406PubMedCrossRefGoogle Scholar
  4. 4.
    Chen AC, Martin AJ, Choy B et al (2015) A phase 3 randomized trial of nicotinamide for skin-cancer chemoprevention. N Engl J Med 373:1618–1626PubMedPubMedCentralCrossRefGoogle Scholar
  5. 5.
    Emmert S, Schoen MP, Haenssle HA (2014) Molecular biology of basal and squamous cell carcinomas. Adv Exp Med Biol 810:234–252PubMedGoogle Scholar
  6. 6.
    Gritz ER, Tripp MK, De Moor CA et al (2003) Skin cancer prevention counseling and clinical practices of pediatricians. Pediatr Dermatol 20:16–24PubMedCrossRefGoogle Scholar
  7. 7.
    Hauschild A, Eichstaedt J, Möbus L et al (2017) Regression of melanoma metastases and multiple non-melanoma skin cancers in xeroderma pigmentosum by the PD1-antibody pembrolizumab. Eur J Cancer 77:84–87PubMedCrossRefGoogle Scholar
  8. 8.
    Holzer AM, Athar M, Elmets C (2010) The other end of the rainbow: infrared and skin. J Invest Dermatol 130:1496–1499PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Jacobs GH, Rippey JJ, Altini M (1982) Prediction of aggressive behavior in basal cell carcinoma. Cancer 49:533–537PubMedCrossRefGoogle Scholar
  10. 10.
    Jayaraman SS, Rayhan DJ, Hazany S (2014) Mutational landscape of basal cell carcinomas by whole-exome sequencing. J Invest Dermatol 134:213–220PubMedCrossRefGoogle Scholar
  11. 11.
    Kerr JF, Searle J (1972) A suggested explanation for the paradoxically slow growth rate of basal-cell carcinomas that contain numerous mitotic figures. J Pathol 107(1):41–44PubMedCrossRefGoogle Scholar
  12. 12.
    de Laat WL, Jaspers NGJ, Hoeijmakers JHJ (1999) Molecular mechanism of nucleotide excision repair. Genes Dev 13:768–785PubMedCrossRefGoogle Scholar
  13. 13.
    Lang BM, Balermpas P, Bauer A et al (2019) S2k guidelines for cutaneous basal cell carcinoma—part 2: treatment, prevention and follow-up. J Dtsch Dermatol Ges 17(2):214–230PubMedGoogle Scholar
  14. 14.
    Lehmann J, Schubert S, Emmert S (2014) Xeroderma pigmentosum: diagnostic procedures, interdisciplinary patient care, and novel therapeutic approaches. J Dtsch Dermatol Ges 12:867–872PubMedGoogle Scholar
  15. 15.
    Lehmann J, Seebode C, Martens MC (2018) Xeroderma pigmentosum—facts and perspectives. Aktuelle Derm 44:232–236CrossRefGoogle Scholar
  16. 16.
    Martens MC, Seebode C, Lehmann J et al (2018) Molecular mechanisms of cutaneous photocarcinogenesis: an update. Aktuelle Derm 44:226–231CrossRefGoogle Scholar
  17. 17.
    Melnikova VO, Ananthaswamy HN (2005) Cellular and molecular events leading to the development of skin cancer. Mutat Res 571:91–106PubMedCrossRefGoogle Scholar
  18. 18.
    Migden MR, Guminski A, Gutzmer R et al (2015) Treatment with two different doses of sonidegib in patients with locally advanced or metastatic basal cell carcinoma (BOLT): a multicentre, randomised, double-blind phase 2 trial. Lancet Oncol 16:716–728PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Rippey JJ (1998) Why classify basal cell carcinomas? Histopathology 32:393–398PubMedCrossRefGoogle Scholar
  20. 20.
    Robert Koch-Institut (RKI) (2016) Bericht zum Krebsgeschehen in Deutschland 2016Google Scholar
  21. 21.
    Rogers HW, Weinstock MA, Feldman SR et al (2015) Incidence estimate of nonmelanoma skin cancer (Keratinocyte carcinomas) in the U.S. Population, 2012. JAMA Dermatol 151(10):1081–1086PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Seebode C, Lehmann J, Emmert S (2016) Photocarcinogenesis and skin cancer prevention strategies. Anticancer Res 36:1371–1378PubMedGoogle Scholar
  23. 23.
    Sekulic A, Migden MR, Oro AE et al (2012) Efficacy and safety of vismodegib in advanced basal-cell carcinoma. N Engl J Med 366:2171–2179PubMedPubMedCentralCrossRefGoogle Scholar
  24. 24.
    Sekulic A, Migden MR, Basset-Seguin N et al (2017) ERIVANCE BCC investigators. Long-term safety and efficacy of vismodegib in patients with advanced basal cell carcinoma: final update of the pivotal ERIVANCE BCC study. BMS Cancer 17:332CrossRefGoogle Scholar
  25. 25.
    Sexton M, Jones DB, Maloney ME (1990) Histologic pattern analysis of basal cell carcinoma. Study of a series of 1039 consecutive neoplasms. J Am Acad Dermatol 23:1118–1126PubMedCrossRefGoogle Scholar
  26. 26.
    Vink AA, Roza L (2001) Biological consequences of cyclobutane pyrimidine dimers. J Photochem Photobiol B 65:101–104PubMedCrossRefGoogle Scholar
  27. 27.
    Wade TR, Ackerman AB (1978) The many faces of basal-cell carcinoma. J Dermatol Surg Oncol 4(1):23–28PubMedCrossRefGoogle Scholar
  28. 28.
    Yu F‑X, Zhao B, Guan K‑L (2015) Hippo Pathway in Organ Size Control, Tissue Homeostasis, and Cancer. Cell 163(4):811–828PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  1. 1.Klinik und Poliklinik für Dermatologie und VenerologieUniversitätsmedizin RostockRostockDeutschland
  2. 2.Klinik für AugenheilkundeUniversitätsklinikum Schleswig-Holstein, Campus LübeckLübeckDeutschland
  3. 3.Zentrum für AugenheilkundeUniversität zu KölnKölnDeutschland
  4. 4.Centrum für Integrierte Onkologie (CIO) Aachen – Bonn – Cologne – DüsseldorfKölnDeutschland

Personalised recommendations