Advertisement

Echtzeit-optische Kohärenztomographie-assistierte Hochpräzisionsvitreoretinalchirurgie in der klinischen Routine

  • M. MaierEmail author
  • L. O. HattenbachEmail author
  • J. Klein
  • A. Nasseri
  • A. Chronopoulos
  • M. Strobel
  • C. P. Lohmann
  • N. Feucht
Das diagnostische und therapeutische Prinzip

Zusammenfassung

Durch die vollständige Integration der SD-OCT (Spectral-Domain-optische Kohärenztomographie) in das Operationsmikroskop bietet die intraoperative optische Kohärenztomographie (iOCT) die Möglichkeit einer gezielten hochauflösenden Bildgebung in Echtzeit. Der Operateur erhält neben dem En-Face-Bild eine Live-Darstellung aller Netzhautschichten, des Glaskörpers sowie der Instrument-Gewebe-Interaktion, die für intraoperative Entscheidungen genutzt werden kann. Im Vergleich zur herkömmlichen Operationsmikroskopie ermöglicht die iOCT eine weitaus höhere Präzision vitreoretinalchirurgischer Maßnahmen und ist essenzielle Voraussetzung zur Umsetzung Echtzeit-kontrollierter Operationstechniken im Mikrometerbereich.

Schlüsselwörter

Intraoperative Bildgebung Makulachirurgie Spectral-Domain-optische Kohärenztomographie Intraoperative optische Kohärenztomographie Operationsmikroskop 

Real-time optical coherence tomography-assisted high-precision vitreoretinal surgery in the clinical routine

Abstract

The complete integration of spectral domain optical coherence tomography (SD-OCT) into an operating microscope now enables targeted, high-resolution imaging-guided vitreoretinal surgery. This provides real-time visualization of retinal layers, vitreous body and instrument-tissue interactions, which can be used for intraoperative decision making. Compared to conventional surgical microscopes, intraoperative OCT enables a greatly enhanced precision of vitreoretinal surgical maneuvers and is an essential prerequisite for the implementation of real-time guided surgical techniques at the micrometer level.

Keywords

Intraoperative imaging Macular surgery Spectral domain optical coherence tomography Intraoperative optical coherence tomography Operating microscope 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

M. Maier, L.O. Hattenbach, J. Klein, A. Nasseri, A. Chronopoulos, M. Strobel, C.P. Lohmann und N. Feucht geben an, dass kein Interessenkonflikt besteht.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien.

Literatur

  1. 1.
    Binder S, Falkner-Radler CI, Hauger C et al (2011) Feasibility of intrasurgical spectral-domain optical coherence tomography. Retina 31:1332–1336CrossRefGoogle Scholar
  2. 2.
    Ehlers JP, Goshe J, Dupps WJ et al (2015) Determination of feasibility and utility of microscope-integrated optical coherence tomography during ophthalmic surgery: the DISCOVER study RESCAN results. JAMA Ophthalmol 133:1124–1132CrossRefGoogle Scholar
  3. 3.
    Ehlers JP, Griffith JF, Srivastava SK (2015) Intraoperative optical coherence tomography during vitreoretinal surgery for dense vitreous hemorrhage in the pioneer study. Retina 35:2537–2542CrossRefGoogle Scholar
  4. 4.
    Ehlers JP, Itoh Y, Xu LT et al (2015) Factors associated with persistent subfoveal fluid and complete macular hole closure in the PIONEER study. Investigative Ophthalmology & Visual Science 56:1141–1146CrossRefGoogle Scholar
  5. 5.
    Ehlers JP, Kaiser PK, Srivastava SK (2014) Intraoperative optical coherence tomography using the RESCAN 700: preliminary results from the DISCOVER study. Br J Ophthalmol 98:1329–1332CrossRefGoogle Scholar
  6. 6.
    Ehlers JP, Petkovsek DS, Yuan A et al (2015) Intrasurgical assessment of subretinal tPA injection for submacular hemorrhage in the PIONEER study utilizing intraoperative OCT. Ophthalmic Surg Lasers Imaging Retina 46:327–332CrossRefGoogle Scholar
  7. 7.
    Ehlers JP, Tam T, Kaiser PK et al (2014) Utility of intraoperative optical coherence tomography during vitrectomy surgery for vitreomacular traction syndrome. Retina 34:1341–1346CrossRefGoogle Scholar
  8. 8.
    Ehlers JP, Tao YK, Farsiu S et al (2011) Integration of a spectral domain optical coherence tomography system into a surgical microscope for intraoperative imaging. Investigative Ophthalmology & Visual Science 52:3153–3159CrossRefGoogle Scholar
  9. 9.
    Ehlers JP, Tao YK, Srivastava SK (2014) The value of intraoperative optical coherence tomography imaging in vitreoretinal surgery. Curr Opin Ophthalmol 25:221–227CrossRefGoogle Scholar
  10. 10.
    Ehlers JP, Uchida A, Srivastava SK et al (2019) Predictive model for macular hole closure speed: insights from intraoperative optical coherence tomography. Transl Vis Sci Technol 8:18CrossRefGoogle Scholar
  11. 11.
    Ehlers JP, Xu D, Kaiser PK et al (2014) Intrasurgical dynamics of macular hole surgery: an assessment of surgery-induced ultrastructural alterations with intraoperative optical coherence tomography. Retina 34:213–221CrossRefGoogle Scholar
  12. 12.
    Falkner-Radler CI, Glittenberg C, Gabriel M et al (2015) Intrasurgical microscope-integrated spectral domain optical coherence tomography-assisted membrane peeling. Retina 35:2100–2106CrossRefGoogle Scholar
  13. 13.
  14. 14.
    Hattenbach LO, Framme C, Junker B et al (2016) Intraoperative real-time OCT in macular surgery. Ophthalmologe 113:656–662CrossRefGoogle Scholar
  15. 15.
    Heinrich D, Bohnacker S, Nasseri MA et al (2019) Intraoperative optical coherence tomography in explorative vitrectomy in patients with vitreous haemorrhage‑a case series. Ophthalmologe 116:261–266CrossRefGoogle Scholar
  16. 16.
    Junker B, Maier M, Agostini H et al (2016) Intraoperative optical coherence tomography in retinal detachment. Ophthalmologe 113:663–667CrossRefGoogle Scholar
  17. 17.
    Khan M, Ehlers JP (2016) Clinical utility of intraoperative optical coherence tomography. Curr Opin Ophthalmol 27:201–209CrossRefGoogle Scholar
  18. 18.
    Lu CD, Waheed NK, Witkin A et al (2018) Microscope-integrated Intraoperative ultrahigh-speed swept-source optical coherence tomography for widefield retinal and anterior segment imaging. Ophthalmic Surg Lasers Imaging Retina 49:94–102CrossRefGoogle Scholar
  19. 19.
    Maier M, Abraham S, Frank C et al (2016) Therapeutic options in vitreomacular traction with or without a macular hole. Klin Monatsbl Augenheilkd 233:622–630CrossRefGoogle Scholar
  20. 20.
    Maier M, Bohnacker S, Klein J et al (2019) Vitrectomy and iOCT-assisted inverted ILM flap technique in patients with full thickness macular holes. Ophthalmologe 116(7):617–624CrossRefGoogle Scholar
  21. 21.
    Maier MM, Nasseri A, Framme C et al (2018) Intraoperative optical coherence tomography in vitreoretinal surgery: clinical experiences and future developments. Klin Monatsbl Augenheilkd 235:1028–1034CrossRefGoogle Scholar
  22. 22.
    Microsystems L (2019) Intrasurgical OCT EnFocus Product Details. https://www.leica-microsystems.com/products/optical-coherence-tomography-oct/p/enfocus/specification/. Zugegriffen: 16.09.19
  23. 23.
    Shen L, Carrasco-Zevallos O, Keller B et al (2016) Novel microscope-integrated stereoscopic heads-up display for intrasurgical optical coherence tomography. Biomed Opt Express 7:1711–1726CrossRefGoogle Scholar
  24. 24.
    Viehland C, Keller B, Carrasco-Zevallos OM et al (2016) Enhanced volumetric visualization for real time 4D intraoperative ophthalmic swept-source OCT. Biomed Opt Express 7:1815–1829CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2019

Authors and Affiliations

  • M. Maier
    • 1
    Email author
  • L. O. Hattenbach
    • 2
    Email author
  • J. Klein
    • 1
  • A. Nasseri
    • 1
  • A. Chronopoulos
    • 2
  • M. Strobel
    • 2
  • C. P. Lohmann
    • 1
  • N. Feucht
    • 1
  1. 1.Augenklinik, Klinikum rechts der IsarTechnische Universität MünchenMünchenDeutschland
  2. 2.Augenklinik des Klinikums LudwigshafenLudwigshafenDeutschland

Personalised recommendations