Advertisement

Foveale avaskuläre Zone und OCT-Angiographie. Eine Übersicht aktueller Erkenntnisse

  • N. MihailovicEmail author
  • N. Eter
  • M. Alnawaiseh
Übersichten
  • 62 Downloads

Zusammenfassung

Hintergrund

Die foveale avaskuläre Zone (FAZ) wurde in den letzten Jahrzehnten bereits häufig unter verschiedenen Gesichtspunkten analysiert, hauptsächlich mittels Fluoreszenzangiographie (FA). Durch die optische Kohärenztomographie-Angiographie (OCTA) jedoch sind eine neuartige, nichtinvasive Untersuchung, Darstellung und quantitative Analyse derselben möglich geworden, was in den vergangenen Jahren zu vielen neuen Erkenntnissen, v. a. auch fächerübergreifend, geführt hat. In dieser Arbeit geben wir einen Überblick über die Untersuchung der FAZ mittels OCTA und die neuen Erkenntnisse, die in den letzten Jahren mittels OCTA gewonnen werden konnten.

Methoden

Dieser Arbeit liegt eine umfassende Literaturrecherche zugrunde.

Ergebnisse

In vielen Studien konnte eine sehr gute Reproduzierbar- und Wiederholbarkeit der FAZ-Messungen durch die OCTA, auch im Gerätevergleich, nachgewiesen werden. Bei Patienten mit okulären Pathologien wie z. B. nach retinalen Venenverschlüssen und bei Patienten nach Netzhautchirurgie konnten Unterschiede zu gesunden Kontrollgruppen sowie Korrelationen zur Funktion gezeigt werden. Veränderungen der FAZ wurden auch bei Systemerkrankungen ohne Augenbeteiligung, so bei Diabetes mellitus ohne diabetische Retinopathie und bei neurologischen Erkrankungen wie bei der Alzheimer-Demenz festgestellt.

Schlussfolgerung

Die FAZ kann mittels OCTA nichtinvasiv visualisiert und reproduzierbar quantifiziert werden. Die Größe der FAZ scheint bei unterschiedlichen retinalen und systemischen Erkrankungen verändert zu sein, was auch mit Veränderungen der Funktion korrelieren kann. Vor allem fehlen derzeit jedoch Langzeitstudien, die den diagnostischen Wert dieser Veränderungen im Krankheitsverlauf evaluieren.

Schlüsselwörter

Optische Kohärenztomographie-Angiographie FAZ Netzhauterkrankungen Reproduzierbarkeit Diabetes mellitus 

Foveal avascular zone and OCT angiography. An overview of current knowledge

Abstract

Background

The foveal avascular zone (FAZ) has often been analyzed under different aspects in the last decades, mainly by fluorescence angiography (FA); however, the novel technology of optical coherence tomography angiography (OCTA) enables a non-invasive examination, visualization and quantitative analysis of the FAZ, which has recently led to many new findings, especially in a multidisciplinary manner. This article provides an overview of the investigation of the FAZ using OCTA and the new findings that have been obtained using OCTA in recent years.

Methods

This article is based on a comprehensive literature review.

Results

In many studies a good reproducibility and repeatability of the FAZ measurements by OCTA could be proven, also by comparing different OCTA devices. In patients with ocular pathologies and systemic diseases, e. g. after retinal vein occlusion or retinal surgery and in patients with diabetes mellitus without diabetic retinopathy, differences to healthy control groups and correlations to visual function could be shown. Moreover, in patients with neurological diseases, such as Alzheimer’s dementia, changes of the FAZ could be identified.

Conclusion

The OCTA is a non-invasive technology, which enables a reliable visualization and reproducible quantification of the FAZ. The size of the FAZ seems to be altered in different retinal and systemic diseases, which also may correlate with visual function; however, long-term studies evaluating the diagnostic value of these changes in the course of the disease are currently lacking.

Keywords

Optical coherence tomography angiography FAZ Retinal diseases Reproducibility Diabetes mellitus 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

N. Mihailovic weist auf Beziehungen zu Novartis hin. N. Eter weist auf Beziehungen zu folgenden Firmen hin: Allergan, Alimera, Bausch und Lomb, Bayer, Heidelberg Engineering, Novartis und Roche. M. Alnawaiseh weist auf Beziehungen zu Bayer und Novartis hin.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Al-Sheikh M, Tepelus TC, Nazikyan T et al (2016) Repeatability of automated vessel density measurements using optical coherence tomography angiography. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2016-308764 CrossRefPubMedGoogle Scholar
  2. 2.
    Alipour SH, Rabbani H, Akhlaghi M, Dehnavi AM, Javanmard SH (2012) Analysis of foveal avascular zone for grading of diabetic retinopathy severity based on curvelet transform. Graefes Arch Clin Exp Ophthalmol 250(11):1607–1614.  https://doi.org/10.1007/s00417-012-2093-6 (Epub 4 Jul 2012)CrossRefPubMedGoogle Scholar
  3. 3.
    Alnawaiseh M, Brand C, Bormann E et al (2017) Quantitative analysis of retinal perfusion in mice using optical coherence tomography angiography. Exp Eye Res 164:151–156.  https://doi.org/10.1016/j.exer.2017.09.003 (Epub 7 Sep 2017)CrossRefPubMedGoogle Scholar
  4. 4.
    Alnawaiseh M, Schubert F, Heiduschka P et al (2017) Optical coherence tomography angiography in patients with Retinitis Pigmentosa. Retina.  https://doi.org/10.1097/IAE.0000000000001904 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  5. 5.
    Anegondi N, Kshirsagar A, Mochi TB et al (2018) Quantitative comparison of retinal vascular features in optical coherence tomography angiography images from three different devices. Ophthalmic Surg Lasers Imaging Retina 49(7):488–496.  https://doi.org/10.3928/23258160-20180628-04 CrossRefPubMedGoogle Scholar
  6. 6.
    Applegate RA, Bradley A, van Heuven WA, Lee BL et al (1997) Entoptic evaluation of diabetic retinopathy. Invest Ophthalmol Vis Sci 38(5):783–791PubMedGoogle Scholar
  7. 7.
    Baba T, Kakisu M, Nizawa T, Oshitari T et al (2017) Superficial foveal avascular zone determined by optical coherence tomography angiography before and after macular hole surgery. Retina 37(3):444–450CrossRefGoogle Scholar
  8. 8.
    Balaratnasingam C, Inoue M, Ahn S, McCann J, Dhrami-Gavazi E, Yanuzzi LA et al (2016) Visual acuity is correlated with the area of the foveal avascular zone in diabetic retinopathy and retinal vein occlusion. Ophthalmology 123(11):2352–2367CrossRefGoogle Scholar
  9. 9.
    Bates NM, Tian J, Smiddy WE et al (2018) Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus. Sci Rep 8(1):5355.  https://doi.org/10.1038/s41598-018-23604-y CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Battaglia Parodi M, Cicinelli MV, Rabiolo A, Pierro L et al (2017) Vascular abnormalities in patients with Stargardt disease assessed with optical coherence tomography angiography. Br J Ophthalmol 101(6):780–785.  https://doi.org/10.1136/bjophthalmol-2016-308869 (Epub 14 Sep 2016)CrossRefPubMedGoogle Scholar
  11. 11.
    Battaglia Parodi M, Iacono P, Romano F, Bolognesi G et al (2017) Optical coherence tomography in Best vitelliform macular dystrophy. Eur J Ophthalmol 27(2):201–204.  https://doi.org/10.5301/ejo.5000878 (Epub 22 Feb 2017)CrossRefPubMedGoogle Scholar
  12. 12.
    Brand C, Zitzmann M, Eter N et al (2017) Aberrant ocular architecture and function in patients with Klinefelter syndrome. Sci Rep 7(1):13130CrossRefGoogle Scholar
  13. 13.
    Browling B (2016) Kanskis Klinische Ophthalmologie: Ein systematischer Ansatz. Übersetzt von Sybille Tönjes, 8. Aufl. Elsevier, München, S 570Google Scholar
  14. 14.
    Bulut M, Akıdan M, Gözkaya O, Erol MK et al (2018) Optical coherence tomography angiography for screening of hydroxychloroquine-induced retinal alterations. Graefes Arch Clin Exp Ophthalmol.  https://doi.org/10.1007/s00417-018-4117-3 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  15. 15.
    Bulut M, Kurtuluş F, Gözkaya O, Erol M et al (2018) Evaluation of optical coherence tomography angiographic findings in Alzheimer’s type dementia. Br J Ophthalmol 102(2):233–237.  https://doi.org/10.1136/bjophthalmol-2017-310476 (Epub 9 Jun 2017)CrossRefPubMedGoogle Scholar
  16. 16.
    Cao D, Yang D, Huang Z (2018) Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol 55(5):469–477.  https://doi.org/10.1007/s00592-018-1115-1 (Epub 16 Feb 2018)CrossRefPubMedGoogle Scholar
  17. 17.
    Carnevali A, Sacconi R, Corbelli E et al (2017) Optical coherence tomography angiography analysis of retinal vascular plexuses and choriocapillaris in patients with type 1 diabetes without diabetic retinopathy. Acta Diabetol 54(7):695–702.  https://doi.org/10.1007/s00592-017-0996-8 (Epub 5 May 2017)CrossRefPubMedGoogle Scholar
  18. 18.
    Carpineto P, Mastropasqua R, Marchini G, Toto L, Di Nicola M, Di Antonio L (2016) Reproducibility and repeatability of foveal avascular zone measurements in healthy subjects by optical coherence tomography angiography. Br J Ophthalmol 100(5):671–676.  https://doi.org/10.1136/bjophthalmol-2015-307330 CrossRefPubMedGoogle Scholar
  19. 19.
    Cheng D, Shen M, Zhuang X, Lin D et al (2018) Inner retinal microvasculature damage correlates with outer retinal disruption during remission in Behçet’s posterior uveitis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 59(3):1295–1304.  https://doi.org/10.1167/iovs.17-23113 CrossRefPubMedGoogle Scholar
  20. 20.
    Chidambara L, Gadde SG, Yadav NK, Jayadev C et al (2016) Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography. Br J Ophthalmol 100(11):1482–1488.  https://doi.org/10.1136/bjophthalmol-2015-307941 (Epub 28 Jan 2016)CrossRefPubMedGoogle Scholar
  21. 21.
    Cho Jz YHC, Bae SH, Kim H (2017) Foveal microvasculature features of surgically closed macular hole using optical coherence tomography angiography. BMC Ophthalmol 17(1):217.  https://doi.org/10.1186/s12886-017-0607-z CrossRefGoogle Scholar
  22. 22.
    Choi J, Kwon J, Shin JW, Lee J et al (2017) Quantitative optical coherence tomography angiography of macular vascular structure and foveal avascular zone in glaucoma. PLoS ONE 12(9):e184948.  https://doi.org/10.1371/journal.pone.0184948 (eCollection 2017)CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Conrath J, Giorgi R, Raccah D, Ridings B (2005) Foveal avascular zone in diabetic retinopathy: quantitative vs qualitative assessment. Eye (Lond) 19(3):322–326CrossRefGoogle Scholar
  24. 24.
    Corvi F, Pellegrini M, Erba S et al (2018) Reproducibility of vessel density, fractal dimension, and foveal avascular zone using 7 different optical coherence tomography angiography devices. Am J Ophthalmol 186:25–31.  https://doi.org/10.1016/j.ajo.2017.11.011 CrossRefPubMedGoogle Scholar
  25. 25.
    Dave PA, Dansingani KK, Jabeen A et al (2018) Comparative evaluation of foveal avascular zone on two optical coherence tomography angiography devices. Optom Vis Sci 95(7):602–607.  https://doi.org/10.1097/OPX.0000000000001238 CrossRefPubMedGoogle Scholar
  26. 26.
    Demirel S, Değirmenci MFK, Bilici S, Yanik Ö et al (2018) The recovery of microvascular status evaluated by optical coherence tomography angiography in patients after successful macular hole surgery. Ophthalmic Res 59(1):53–57.  https://doi.org/10.1159/000484092 (Epub 29 Nov 2017)CrossRefPubMedGoogle Scholar
  27. 27.
    Fang D, Tang FY, Huang H et al (2018) Repeatability, interocular correlation and agreement of quantitative swept-source optical coherence tomography angiography macular metrics in healthy subjects. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2018-311874 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  28. 28.
    Garrity ST, Iafe NA, Phasukkijwatana N et al (2017) Quantitative analysis of three distinct retinal capillary plexuses in healthy eyes using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(12):5548–5555.  https://doi.org/10.1167/iovs.17-22036 CrossRefPubMedGoogle Scholar
  29. 29.
    Ghassemi F, Mirshahi R, Bazvand F et al (2017) The quantitative measurements of foveal avascular zone using optical coherence tomography angiography in normal volunteers. J Curr Ophthalmol 29(4):293–299CrossRefGoogle Scholar
  30. 30.
    Goker YS, Yılmaz S, Kızıltoprak H, Tekin K et al (2018) Quantitative analysis of optical coherence tomography angiography features in patients with Nonocular Behcet’s disease. Curr Eye Res:1–7.  https://doi.org/10.1080/02713683.2018.1530361 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  31. 31.
    Gołębiewska J, Olechowski A, Wysocka-Mincewicz M (2017) Optical coherence tomography angiography vessel density in children with type 1 diabetes. PLoS ONE 12(10):e186479.  https://doi.org/10.1371/journal.pone.0186479 (eCollection 2017)CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Guo J, She X, Liu X, Sun X (2017) Repeatability and reproducibility of foveal avascular zone area measurements using AngioPlex spectral domain optical coherence tomography angiography in healthy subjects. Ophthalmologica 237(1):21–28.  https://doi.org/10.1159/000453112 CrossRefPubMedGoogle Scholar
  33. 33.
    Guo J, Tang W, Ye X et al (2018) Predictive multi-imaging biomarkers relevant for visual acuity in idiopathic macular telangiectasis type 1. BMC Ophthalmol 18(1):69.  https://doi.org/10.1186/s12886-018-0737-y CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Hammer DX, Iftimia NV, Ferguson RD, Bigelow CE, Ustun TE, Barnaby AM, Fulton AB (2008) Foveal fine structure in retinopathy of prematurity: an adaptive optics Fourier domain optical coherence tomography study. Invest Ophthalmol Vis Sci 49(5):2061–2070.  https://doi.org/10.1167/iovs.07-1228 (Epub 2008)CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Hilmantel G, Applegate RA, van Heuven WA et al (1999) Entoptic foveal avascular zone measurement and diabetic retinopathy. Optom Vis Sci 76(12):826–831CrossRefGoogle Scholar
  36. 36.
    Iafe NA, Phasukkijwatana N, Chen X, Sarraf D (2016) Retinal capillary density and foveal avascular zone area are age-dependent: quantitative analysis using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(13):5780–5787CrossRefGoogle Scholar
  37. 37.
    Ishibazawa A, Nagaoka T, Takahashi A et al (2015) Optical coherence tomography angiography in diabetic retinopathy: a prospective pilot study. Am J Ophthalmol 160(1):35–44.e1CrossRefGoogle Scholar
  38. 38.
    Jia Y, Bailey ST, Hwang TS et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in living human eye. Proc Natl Acad Sci USA 112(18):E2395–402.  https://doi.org/10.1073/pnas.1500185112 CrossRefPubMedGoogle Scholar
  39. 39.
    Jia Y, Bailey ST, Wilson DJ et al (2014) Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. Ophthalmology 121(7):1435–1444CrossRefGoogle Scholar
  40. 40.
    Jia Y, Wei E, Wang X et al (2014) Optical coherence tomography angiography of optic disc perfusion in glaucoma. Ophthalmology 121(7):1322–1332CrossRefGoogle Scholar
  41. 41.
    Kang JW, Yoo R, Jo YH, Kim HC (2017) Correlation of microvascular structures on optical coherence tomography angiography with visual acuity in retinal vein occlusion. Retina 37(9):1700–1709.  https://doi.org/10.1097/IAE.0000000000001403 CrossRefPubMedGoogle Scholar
  42. 42.
    Kim K, Kim ES, Yu SY (2017) Optical coherence tomography angiography analysis of foveal microvascular changes and inner retinal layer thinning in patients with diabetes. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2017-311149 (Epub ahead of print)CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Kim YJ, Jo J, Lee JY et al (2018) Macular capillary plexuses after macular hole surgery: an optical coherence tomography angiography study. Br J Ophthalmol 102(7):966–970.  https://doi.org/10.1136/bjophthalmol-2017-311132 (Epub 5 Oct 2017)CrossRefPubMedGoogle Scholar
  44. 44.
    Kim YJ, Kim S, Lee JY et al (2017) Macular capillary plexuses after epiretinal membrane surgery: an optical coherence tomography angiography study. Br J Ophthalmol 102(8):1086–1091.  https://doi.org/10.1136/bjophthalmol-2017-311188 (Epub 31 Oct 2017)CrossRefPubMedGoogle Scholar
  45. 45.
    Koyanagi Y, Murakami Y, Funatsu J, Akiyama M et al (2018) Optical coherence tomography angiography of the macular microvasculature changes in retinitis pigmentosa. Acta Ophthalmol 96(1):e59–e67.  https://doi.org/10.1111/aos.13475 (Epub 31 May 2017)CrossRefPubMedGoogle Scholar
  46. 46.
    Kumagai K, Ogino N, Furukawa M, Ooya R, Horie E (2018) Early centripetal displacements of capillaries in macular region caused by internal limiting membrane peeling. Clin Ophthalmol 12:755–763.  https://doi.org/10.2147/OPTH.S158826 (eCollection 2018)CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    La Spina C, Carnevali A, Marchese A, Querques G et al (2017) Reproducibility and reliability of optical coherence tomography angiography for foveal avascular zone evaluation and measurement in different settings. Retina 37(9):1636–1641.  https://doi.org/10.1097/IAE.0000000000001426 CrossRefPubMedGoogle Scholar
  48. 48.
    Lee CM, Charles HC, Smith RT, Peachey NS et al (1987) Quantification of macular ischemia in sickle cell retinopathy. Br J Ophthalmol 71(7):540–545CrossRefGoogle Scholar
  49. 49.
    Li Z, Alzogool M, Xiao J et al (2018) Optical coherence tomography angiography findings of neurovascular changes in type 2 diabetes mellitus patients without clinical diabetic retinopathy. Acta Diabetol 55(10):1075–1082.  https://doi.org/10.1007/s00592-018-1202-3 (Epub 31 Jul 2018)CrossRefPubMedGoogle Scholar
  50. 50.
    Linderman R, Salmon AE, Strampe M, Russillo M et al (2017) Assessing the accuracy of foveal avascular zone measurements using optical coherence tomography angiography: segmentation and scaling. Transl Vis Sci Technol 6(3):16.  https://doi.org/10.1167/tvst.6.3.16 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Magrath GN, Say EA, Sioufi K et al (2016) Variability in foveal avascular zone and capillary density using optical coherence tomography angiography machines in healthy eyes. Retina.  https://doi.org/10.1097/iae.0000000000001458 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  52. 52.
    Mastropasqua R, Toto L, Mattei PA, Di Nicola M, Zecca IAL, Carpineto P et al (2017) Reproducibility and repeatability of foveal avascular zone area measurements using swept-source optical coherence tomography angiography in healthy subjects. Eur J Ophthalmol 27(3):336–341.  https://doi.org/10.5301/ejo.5000858 CrossRefPubMedGoogle Scholar
  53. 53.
    Matet A, Daruich A, Dirani A, Ambresin A et al (2016) Macular Telangiectasia type 1: capillary density and Microvascular abnormalities assessed by optical coherence tomography angiography. Am J Ophthalmol 167:18–30.  https://doi.org/10.1016/j.ajo.2016.04.005 (Epub 12 Apr 2016)CrossRefPubMedGoogle Scholar
  54. 54.
    Mendis KR, Balaratnasingam C, Yu P et al (2010) Correlation of histologic and clinical images to determine the diagnostic value of fluorescein angiography for studying retinal capillary detail. Invest Ophthalmol Vis Sci 51(11):5864–5869.  https://doi.org/10.1167/iovs.10-5333 CrossRefPubMedGoogle Scholar
  55. 55.
    Mihailovic N, Brand C, Bormann E et al (2018) Repeatability, reproducibility and agreement of foveal avascular zone measurements using three different optical coherence tomography angiography devices. PLoS ONE 13(10):e206045.  https://doi.org/10.1371/journal.pone.0206045 (eCollection 2018)CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Miwa Y, Murakami T, Suzuma K, Uji A et al (2016) Relationship between functional and structural changes in diabetic vessels in optical coherence tomography angiography. Sci Rep 6:29064.  https://doi.org/10.1038/srep29064 CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Munk MR, Giannakaki-Zimmermann H, Berger L et al (2017) OCT-angiography: a qualitative and quantitative comparison of 4 OCT-A devices. PLoS ONE 12(5):e177059.  https://doi.org/10.1371/journal.pone.0177059 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Pilotto E, Frizziero L, Crepaldi A, Della Dora E, Deganello D, Longhin E (2018) Repeatability and reproducibility of foveal avascular zone area measurement on normal eyes by different optical coherence tomography angiography instruments. Ophthalmic Res 59(4):206–211CrossRefGoogle Scholar
  59. 59.
    Rommel F, Siegfried F, Kurz M et al (2018) Impact of correct anatomical slab segmentation on foveal avascular zone measurements by optical coherence tomography angiography in healthy adults. J Curr Ophthalmol 30(2):156–160.  https://doi.org/10.1016/j.joco.2018.02.001 (Published online 20 Mar 2018)CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Samara WA, Say EA, Khoo CT, Higgins TP, Magrat G, Ferenczy S et al (2015) Correlation of foveal avascular zone size with foveal morphology in normal eyes using optical coherence tomography angiography. Retina 35(11):2188–2195CrossRefGoogle Scholar
  61. 61.
    Samara WA, Shahlaee A, Adam MK et al (2017) Quantification of diabetic macular Ischemia using optical coherence tomography angiography and its relationship with visual acuity. Ophthalmology 124(2):235–244.  https://doi.org/10.1016/j.ophtha.2016.10.008 (Epub 23 Nov 2016)CrossRefPubMedGoogle Scholar
  62. 62.
    Sandhu HS, Eladawi N, Elmogy M et al (2018) Automated diabetic retinopathy detection using optical coherence tomography angiography: a pilot study. Br J Ophthalmol.  https://doi.org/10.1136/bjophthalmol-2017-311489 (Epub ahead of print)CrossRefPubMedGoogle Scholar
  63. 63.
    Schmitz B, Nelis P, Rolfes F, Alnawaiseh M, Klose A, Krüger M, Eter N, Brand SM, Alten F (2018) Effects of high-intensity interval training on optic nerve head and macular perfusion using optical coherence tomography angiography in healthy adults. Atherosclerosis 274:8–15.  https://doi.org/10.1016/j.atherosclerosis.2018.04.028 (Epub 26 Apr 2018)CrossRefPubMedGoogle Scholar
  64. 64.
    Shahlaee A, Pefkianaki M, Hsu J, Ho AC (2016) Measurement of foveal avascular zone dimensions and its reliability in healthy eyes using optical coherence tomography angiography. Am J Ophthalmol 161:50–55.e1CrossRefGoogle Scholar
  65. 65.
    Shiihara H, Otsuka H, Terasaki H (2017) Reproducibility and differences in area of foveal avascular zone measured by three different optical coherence tomographic angiography instruments. Sci Rep 7(1):9853CrossRefGoogle Scholar
  66. 66.
    Shin YU, Kim S, Lee BR, Shin JW, Kim SI (2012) Novel noninvasive detection of the fovea avascular zone using confocal red-free imaging in diabetic retinopathy and retinal vein occlusion. Invest Ophthalmol Vis Sci 53(1):309–315.  https://doi.org/10.1167/iovs.11-8510 CrossRefPubMedGoogle Scholar
  67. 67.
    Sleightholm MA, Arnold J, Kohner EM (1988) Diabetic retinopathy: I. The measurement of intercapillary area in normal retinal angiograms. J Diabet Complications 2(3):113–116CrossRefGoogle Scholar
  68. 68.
    Spaide RF, Curcio CA (2017) Evaluation of segmentation of the superficial and deep vascular layers of the retina by optical coherence tomography angiography instruments in normal eyes. JAMA Ophthalmol 135(3):259–262.  https://doi.org/10.1001/jamaophthalmol.2016.5327 CrossRefPubMedGoogle Scholar
  69. 69.
    Spaide RF, Klancnik JM Jr, Cooney MJ, Yannuzzi LA (2015) Volume-rendering optical coherence tomography angiography of macular Telangiectasia type 2. Ophthalmology 122(11):2261–2269.  https://doi.org/10.1016/j.ophtha.2015.07.025 (Epub 24 Aug 2015)CrossRefPubMedGoogle Scholar
  70. 70.
    Sugahara M, Miyata M, Ishihara K, Gotoh N et al (2017) Optical coherence tomography angiography to estimate retinal blood flow in eyes with Retinitis Pigmentosa. Sci Rep 7:46396.  https://doi.org/10.1038/srep46396 CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Suzuki N, Hirano Y, Tomiyasu T et al (2016) Retinal Hemodynamics seen on optical coherence tomography angiography before and after treatment of retinal vein occlusion. Invest Ophthalmol Vis Sci 57(13):5681–5687.  https://doi.org/10.1167/iovs-16-20648 CrossRefPubMedGoogle Scholar
  72. 72.
    Takagi S, Hirami Y, Takahashi M et al (2018) Optical coherence tomography angiography in patients with retinitis pigmentosa who have normal visual acuity. Acta Ophthalmol 96(5):e636–e642.  https://doi.org/10.1111/aos.13680 (Epub 1 Mar 2018)CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Takase N, Nozaki M, Kato A et al (2015) Enlargement of foveal avascular zone in diabetic eyes evaluated by en face optical coherence tomography angiography. Retina 35(11):2377–2383.  https://doi.org/10.1097/IAE.0000000000000849 CrossRefPubMedGoogle Scholar
  74. 74.
    Tang FY, Ng DS, Lam A et al (2017) Determinants of quantitative optical coherence tomography angiography metrics in patients with diabetes. Sci Rep 7(1):2575.  https://doi.org/10.1038/s41598-017-02767-0 CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Waizel M, Todorova MG, Terrada C, LeHoang P, Massamba N, Bodaghi B (2018) Superficial and deep retinal foveal avascular zone OCTA findings of non-infectious anterior and posterior uveitis. Graefes Arch Clin Exp Ophthalmol.  https://doi.org/10.1007/s00417-018-4057-y (Epub ahead of print)CrossRefPubMedGoogle Scholar
  76. 76.
    Wakabayashi T, Sato T, Hara-Ueno C et al (2017) Retinal microvasculature and visual acuity in eyes with branch retinal vein occlusion: imaging analysis by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 58(4):2087–2094CrossRefGoogle Scholar
  77. 77.
    Wang Q, Kocaoglu OP, Cense B et al (2011) Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics. Invest Ophthalmol Vis Sci 52(9):6292–6299.  https://doi.org/10.1167/iovs.10-6424 CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Winegarner A, Wakabayashi T, Fukushima Y et al (2018) Changes in retinal microvasculature and visual acuity after antivascular endothelial growth factor therapy in retinal vein occlusion. Invest Ophthalmol Vis Sci 59(7):2708–2716.  https://doi.org/10.1167/iovs.17-23437 CrossRefPubMedGoogle Scholar
  79. 79.
    Wons J, Pfau M, Wirth MA et al (2016) Optical coherence tomography angiography of the foveal avascular zone in retinal vein occlusion. Ophthalmologica 235(4):195–202.  https://doi.org/10.1159/000445482 (Epub 5 May 2016)CrossRefPubMedGoogle Scholar
  80. 80.
    Woo JM, Yoon YS, Woo JE, Min JK (2018) Foveal avascular zone area changes analyzed using OCT angiography after successful rhegmatogenous retinal detachment repair. Curr Eye Res 43(5):674–678.  https://doi.org/10.1080/02713683.2018.1437922 (Epub 16 Feb 2018)CrossRefPubMedGoogle Scholar
  81. 81.
    Yun C, Ahn J, Kim M, Kim JT et al (2017) Characteristics of retinal vessels in surgically closed macular hole: an optical coherence tomography angiography study. Graefes Arch Clin Exp Ophthalmol 255(10):1923–1934.  https://doi.org/10.1007/s00417-017-3742-6 (Epub 25 Jul 2017)CrossRefPubMedGoogle Scholar
  82. 82.
    Zhang Z, Huang X, Meng X et al (2017) In vivo assessment of macula in eyes of healthy children 8 to 16 years old using optical coherence tomography angiography. Sci Rep 7(1):8936.  https://doi.org/10.1038/s41598-017-08174-9 CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Zivkovic M, Dayanir V, Kocaturk T, Zlatanovic M et al (2017) Foveal avascular zone in normal tension glaucoma measured by optical coherence tomography angiography. Biomed Res Int 2017:3079141.  https://doi.org/10.1155/2017/3079141 (Epub 2017 Dec 17.)CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Klinik für AugenheilkundeUniversitätsklinikum MünsterMünsterDeutschland

Personalised recommendations