Advertisement

Der Ophthalmologe

, Volume 115, Issue 12, pp 1028–1034 | Cite as

Genetische Diagnostik von Netzhautdystrophien

Revolutionierung durch neue Methoden der DNA-Sequenzierung
  • H. J. Bolz
Leitthema

Zusammenfassung

Bis Mitte der 2000er-Jahre konnte Patienten mit Netzhautdystrophien nur in sehr eingeschränktem Maße eine molekulargenetische Diagnostik zur Diagnosesicherung und spezifischen humangenetischen Beratung angeboten werden. Viele der Gene, deren Mutationen z. B. zu Retinitis pigmentosa, Leberscher kongenitaler Amaurose und Zapfen-Stäbchen-Dystrophien führen, waren bereits bekannt, die verfügbaren Methoden der DNA-Sequenzanalyse aber für eine Routinediagnostik zu teuer und langwierig. Die unter „next-generation sequencing“ (NGS) zusammengefassten Verfahren der Hochdurchsatzsequenzierung haben dies grundlegend geändert: Zunächst in der Forschung angewendet, beschleunigten NGS-Verfahren die Identifizierung neuer Krankheitsgene erheblich – die Mutationen der meisten Patienten mit Netzhautdystrophien lassen sich heute bereits in den als krankheitsursächlich bekannten Genen finden. Seit etwa 2010 fand NGS Eingang in die Routinediagnostik. Dies gestattet bei den meisten Patienten eine genetische Diagnosestellung und somit eine spezifische genetische Beratung und medizinische Betreuung. Stetig verbesserte Bioinformatik und umfassende Datenbanken erleichtern die Auswertung der komplexen NGS-Daten. Eine intensive wissenschaftliche Vertrautheit mit der Genetik retinaler Dystrophien bleibt jedoch unabdingbar, um falsche Interpretationen der Daten zu vermeiden. Dies gilt auch für die enge Interaktion von Augenärzten und Humangenetikern.

Schlüsselwörter

Next-generation sequencing Exomsequenzierung Genomsequenzierung Genotyp-Phänotyp-Korrelation Krankheitsgene 

Genetic diagnostics of retinal dystrophies

Breakthrough with new methods of DNA sequencing

Abstract

Until the mid-2000s, knowledge about the genetic causes of retinal dystrophies was not adequately translated into molecular diagnostics and genetic counselling offered to the patients. Although many genes whose mutations underlie retinal degeneration, e.g., retinitis pigmentosa, Leber congenital amaurosis and cone-rod dystrophies were known, they could not be analyzed on a routine diagnostic basis because DNA sequencing was too expensive and time-consuming. New methods summarized under the term next-generation sequencing (NGS) procedures for high-throughput sequencing have changed this completely. In its initial application in research NGS greatly accelerated the pace of novel disease gene identification: the mutations of most patients with retinal dystrophies can today be found in genes which are known to be associated with the condition. Since approximately 2010, NGS has expanded into routine diagnostics. In most patients, this now enables a genetic diagnosis and therefore specific genetic counselling and medical treatment. Constantly improving bioinformatics and comprehensive databases facilitate the evaluation of the complex NGS data. Nevertheless, profound scientific knowledge regarding the genetics of retinal dystrophies is indispensable to avoid erroneous data interpretation. This is also true for the close interaction between ophthalmologists and medical geneticists.

Keywords

Next-generation sequencing Whole-exome sequencing Whole-genome sequencing Genoytpe-phenotype correlation Disease genes 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

H.J. Bolz gibt an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine vom Autor durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Albers CA, Paul DS, Schulze H et al (2012) Compound inheritance of a low-frequency regulatory SNP and a rare null mutation in exon-junction complex subunit RBM8A causes TAR syndrome. Nat Genet 44:435–439CrossRefPubMedCentralPubMedGoogle Scholar
  2. 2.
    Albert S, Garanto A, Sangermano R et al (2018) Identification and rescue of splice defects caused by two neighboring deep-intronic ABCA4 mutations underlying stargardt disease. Am J Hum Genet 102:517–527CrossRefPubMedCentralPubMedGoogle Scholar
  3. 3.
    Birtel J, Eisenberger T, Gliem M et al (2018) Clinical and genetic characteristics of 251 consecutive patients with macular and cone/cone-rod dystrophy. Sci Rep 8:4824CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Eisenberger T, Neuhaus C, Khan AO et al (2013) Increasing the yield in targeted next-generation sequencing by implicating CNV analysis, non-coding exons and the overall variant load: the example of retinal dystrophies. PLoS ONE 8:e78496CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Haer-Wigman L, Van Zelst-Stams WA, Pfundt R et al (2017) Diagnostic exome sequencing in 266 Dutch patients with visual impairment. Eur J Hum Genet 25:591–599CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Khan AO, Becirovic E, Betz C et al (2017) A deep intronic CLRN1 (USH3A) founder mutation generates an aberrant exon and underlies severe Usher syndrome on the Arabian Peninsula. Sci Rep 7:1411CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Khan AO, Bifari IN, Bolz HJ (2015) Ophthalmic features of children not yet diagnosed with Alstrom syndrome. Ophthalmology 122:1726–1727CrossRefPubMedGoogle Scholar
  8. 8.
    Li X, Kim Y, Tsang EK et al (2017) The impact of rare variation on gene expression across tissues. Nature 550:239–243CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Majewski J, Schwartzentruber J, Lalonde E et al (2011) What can exome sequencing do for you? J Med Genet 48:580–589CrossRefPubMedGoogle Scholar
  10. 10.
    Neuhaus C, Eisenberger T, Decker C et al (2017) Next-generation sequencing reveals the mutational landscape of clinically diagnosed Usher syndrome: copy number variations, phenocopies, a predominant target for translational read-through, and PEX26 mutated in Heimler syndrome. Mol Genet Genomic Med 5:531–552CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Reinius B, Sandberg R (2015) Random monoallelic expression of autosomal genes: stochastic transcription and allele-level regulation. Nat Rev Genet 16:653–664CrossRefPubMedGoogle Scholar
  12. 12.
    Scholl HP, Strauss RW, Singh MS et al (2016) Emerging therapies for inherited retinal degeneration. Sci Transl Med 8:368rv366CrossRefGoogle Scholar
  13. 13.
    Stone EM, Andorf JL, Whitmore SS et al (2017) Clinically focused molecular investigation of 1000 consecutive families with inherited retinal disease. Ophthalmology 124:1314–1331CrossRefPubMedCentralPubMedGoogle Scholar
  14. 14.
    Webb TR, Parfitt DA, Gardner JC et al (2012) Deep intronic mutation in OFD1, identified by targeted genomic next-generation sequencing, causes a severe form of X‑linked retinitis pigmentosa (RP23). Hum Mol Genet 21:3647–3654CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Zaki MS, Heller R, Thoenes M et al (2016) PEX6 is expressed in photoreceptor cilia and mutated in deafblindness with enamel dysplasia and microcephaly. Hum Mutat 37:170–174CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  1. 1.Facharztzentrum Frankfurt-Nordend gemeinnützige GmbHSenckenberg Zentrum für HumangenetikFrankfurt am MainDeutschland

Personalised recommendations