Advertisement

Der Ophthalmologe

, Volume 115, Issue 8, pp 635–643 | Cite as

Dynamischer Scheimpflug-Analyzer (Corvis ST) zur Bestimmung kornealer biomechanischer Parameter

Ein praxisbezogener Überblick
  • R. Herber
  • N. Terai
  • K. R. Pillunat
  • F. Raiskup
  • L. E. Pillunat
  • E. Spörl
Leitthema
  • 109 Downloads

Zusammenfassung

Hintergrund

Topographische und tomographische Parameter reichen oft für die frühzeitige Diagnostik von Hornhautveränderungen nicht aus. Pathologische Prozesse beginnen in der Mikrostruktur, noch bevor topographische/tomographische Auffälligkeiten erkennbar werden. Biomechanische Parameter korrelieren sehr stark mit den mikroskopischen strukturellen Kenngrößen.

Ziel der Arbeit

Ziel war die Ermittlung biomechanischer Parameter zur Charakteristik der kornealen mikroskopischen Gewebestruktur.

Material und Methoden

Mit dem dynamischen Scheimpflug-Analyzer (Corvis ST, Fa. OCULUS Optikgeräte GmbH, Wetzlar) wird das Deformationsverhalten der Hornhaut aufgenommen, daraus werden korneale Deformationsparameter sowie biomechanische Indizes für die Klassifizierung abgeleitet.

Ergebnisse

Deformationsparameter und Indizes unterscheiden sich bei Keratokonus signifikant von denen Gesunder. Es lassen sich Änderungen der Hornhaut bereits vor topographischen oder tomographischen Veränderungen nachweisen. Relevante Deformationsparameter weisen eine gute bis sehr gute Wiederhol- und Reproduzierbarkeit auf. Auch beim Glaukom zeigt sich ein verändertes Deformationsverhalten, was auf strukturelle Veränderungen zurückführbar ist.

Schlussfolgerung

Mit dem Corvis ST, einem Scheimpflug-basierten Tonometer, lässt sich die Kornea hinsichtlich Gewebestruktur und Konsistenz charakterisieren.

Schlüsselwörter

Biomechanik Augenerkrankungen Keratokonus Glaukom Hornhaut 

Dynamic Scheimpflug Analyzer (Corvis ST) for measurement of corneal biomechanical parameters

A praxis-related overview

Abstract

Background

Topographic and tomographic parameters alone are often not sufficient for early detection of corneal changes. Pathological alterations in the microstructure of the cornea occur before changes in topography and tomography can be detected. Biomechanical parameters show a strong correlation with microscopic structural changes.

Objective

The aim of the study was to gain information about the microscopic structure and consistency of the cornea by measuring biomechanical parameters.

Materials and methods

The deformation behavior of the cornea was analyzed with the Dynamic Scheimpflug Analyzer (Corvis ST; OCULUS, Wetzlar, Germany). Deformation parameters and biomechanical indices were derived from the deformation response of the cornea.

Results

Deformation parameters and indices in keratoconus patients differ significantly from healthy subjects. Alterations of the cornea can be detected before topographic and tomographic changes occur. The repeatability and reproducibility of relevant deformation parameters is good to very good. In glaucoma patients a modified deformation behavior of the cornea can be observed, which might be related to structural changes.

Conclusion

The Corvis ST allows a reliable characterization of the tissue structure and consistency of the cornea.

Keywords

Biomechanics Eye diseases Keratoconus Glaucoma Cornea 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

R. Herber, N. Terai, K.R. Pillunat, F. Raiskup, L.E. Pillunat und E. Spörl geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Ali NQ, Patel DV, Mcghee CN (2014) Biomechanical responses of healthy and keratoconic corneas measured using a noncontact scheimpflug-based tonometer. Invest Ophthalmol Vis Sci 55:3651–3659CrossRefPubMedGoogle Scholar
  2. 2.
    Ambrosio R Jr., Lopes BT, Faria-Correia F et al (2017) Integration of Scheimpflug-based corneal tomography and biomechanical assessments for enhancing ectasia detection. J Refract Surg 33:434–443CrossRefPubMedGoogle Scholar
  3. 3.
    Asaoka R, Nakakura S, Tabuchi H et al (2015) The relationship between Corvis ST Tonometry measured corneal parameters and intraocular pressure, corneal thickness and corneal curvature. PLoS ONE 10:e140385CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Bao F, Deng M, Wang Q et al (2015) Evaluation of the relationship of corneal biomechanical metrics with physical intraocular pressure and central corneal thickness in ex vivo rabbit eye globes. Exp Eye Res 137:11–17CrossRefPubMedGoogle Scholar
  5. 5.
    Clayson K, Pan X, Pavlatos E et al (2017) Corneoscleral stiffening increases IOP spike magnitudes during rapid microvolumetric change in the eye. Exp Eye Res 165:29–34CrossRefPubMedGoogle Scholar
  6. 6.
    Everitt BS, Skrondal A (2011) The Cambridge dictionary of statistics. Cambridge University Press, CambridgeGoogle Scholar
  7. 7.
    Falkenstein IA, Cheng L, Freeman WR (2007) Changes of intraocular pressure after intravitreal injection of bevacizumab (avastin). Retina 27:1044–1047CrossRefPubMedGoogle Scholar
  8. 8.
    Fleiss JL (1986) The design and analysis of clinical experiments. Wiley, HobokenGoogle Scholar
  9. 9.
    Francis M, Pahuja N, Shroff R et al (2017) Waveform analysis of deformation amplitude and deflection amplitude in normal, suspect, and keratoconic eyes. J Cataract Refract Surg 43:1271–1280CrossRefPubMedGoogle Scholar
  10. 10.
    Huseynova T, Waring GOT, Roberts C et al (2014) Corneal biomechanics as a function of intraocular pressure and pachymetry by dynamic infrared signal and Scheimpflug imaging analysis in normal eyes. Am J Ophthalmol 157:885–893CrossRefPubMedGoogle Scholar
  11. 11.
    Jung Y, Park HL, Yang HJ et al (2017) Characteristics of corneal biomechanical responses detected by a non-contact scheimpflug-based tonometer in eyes with glaucoma. Acta Ophthalmol.  https://doi.org/10.1111/aos.13466 CrossRefPubMedGoogle Scholar
  12. 12.
    Kling S, Bekesi N, Dorronsoro C et al (2014) Corneal viscoelastic properties from finite-element analysis of in vivo air-puff deformation. PLoS ONE 9:e104904CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Labiris G, Gatzioufas Z, Sideroudi H et al (2013) Biomechanical diagnosis of keratoconus: evaluation of the keratoconus match index and the keratoconus match probability. Acta Ophthalmol (Copenh) 91:e258–e262CrossRefGoogle Scholar
  14. 14.
    Labiris G, Giarmoukakis A, Sideroudi H et al (2014) Diagnostic capacity of biomechanical indices from a dynamic bidirectional applanation device in pellucid marginal degeneration. J Cataract Refract Surg 40:1006–1012CrossRefPubMedGoogle Scholar
  15. 15.
    Lee R, Chang RT, Wong IY et al (2016) Novel parameter of corneal biomechanics that differentiate normals from glaucoma. J Glaucoma 25:e603–e609CrossRefPubMedGoogle Scholar
  16. 16.
    Leske MC, Heijl A, Hyman L et al (2007) Predictors of long-term progression in the early manifest glaucoma trial. Ophthalmology 114:1965–1972CrossRefPubMedGoogle Scholar
  17. 17.
    Leszczynska A, Moehler K, Spoerl E et al (2017) Measurement of orbital biomechanical properties in patients with thyroid orbitopathy using the dynamic Scheimpflug analyzer (Corvis ST). Curr Eye Res.  https://doi.org/10.1080/02713683.2017.1405044 PubMedCrossRefGoogle Scholar
  18. 18.
    Long Q, Wang JY, Xu D et al (2017) Comparison of corneal biomechanics in Sjogren’s syndrome and non-Sjogren’s syndrome dry eyes by Scheimpflug based device. Int J Ophthalmol 10:711–716PubMedPubMedCentralGoogle Scholar
  19. 19.
    Lopes BT, Roberts CJ, Elsheikh A et al (2017) Repeatability and reproducibility of intraocular pressure and dynamic corneal response parameters assessed by the Corvis ST. J Ophthalmol.  https://doi.org/10.1155/2017/8515742 PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Mcalinden C, Khadka J, Pesudovs K (2015) Precision (repeatability and reproducibility) studies and sample-size calculation. J Cataract Refract Surg 41:2598–2604CrossRefPubMedGoogle Scholar
  21. 21.
    Metzler KM, Mahmoud AM, Liu J et al (2014) Deformation response of paired donor corneas to an air puff: intact whole globe versus mounted corneoscleral rim. J Cataract Refract Surg 40:888–896CrossRefPubMedGoogle Scholar
  22. 22.
    Miki A, Maeda N, Ikuno Y et al (2017) Factors associated with corneal deformation responses measured with a dynamic Scheimpflug analyzer. Invest Ophthalmol Vis Sci 58:538–544CrossRefPubMedGoogle Scholar
  23. 23.
    Muench S, Balzani D, Roellig M et al (2017) Method for the development of realistic boundary conditions for the simulation of non-contact tonometry. Proc Appl Math Mech 17:207–208CrossRefGoogle Scholar
  24. 24.
    Nemeth G, Szalai E, Hassan Z et al (2017) Corneal biomechanical data and biometric parameters measured with Scheimpflug-based devices on normal corneas. Int J Ophthalmol 10:217–222PubMedPubMedCentralGoogle Scholar
  25. 25.
    Pillunat K (2018) New parameter for diagnostic of gleucoma: BGI- biomechanical glaucoma index. ARVO AbstractGoogle Scholar
  26. 26.
    Rogowska ME, Iskander DR (2015) Age-related changes in corneal deformation dynamics utilizing Scheimpflug imaging. PLoS ONE 10:e140093CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Salvetat ML, Zeppieri M, Tosoni C et al (2015) Corneal deformation parameters provided by the Corvis-ST Pachy-Tonometer in healthy subjects and glaucoma patients. J Glaucoma 24:568–574CrossRefPubMedGoogle Scholar
  28. 28.
    Sigal IA, Flanagan JG, Ethier CR (2005) Factors influencing optic nerve head biomechanics. Invest Ophthalmol Vis Sci 46:4189–4199CrossRefPubMedGoogle Scholar
  29. 29.
    Silver DM, Geyer O (2000) Pressure-volume relation for the living human eye. Curr Eye Res 20:115–120CrossRefPubMedGoogle Scholar
  30. 30.
    Sinha Roy A, Kurian M, Matalia H et al (2015) Air-puff associated quantification of non-linear biomechanical properties of the human cornea in vivo. J Mech Behav Biomed Mater 48:173–182CrossRefPubMedGoogle Scholar
  31. 31.
    Spoerl E, Pillunat KR, Kuhlisch E et al (2015) Concept for analyzing biomechanical parameters in clinical studies. Cont Lens Anterior Eye 38:389CrossRefPubMedGoogle Scholar
  32. 32.
    Spörl E, Terai N, Haustein M et al (2009) Biomechanische Zustand der Hornhaut als neuer Indikator für pathologische und strukturelle Veränderungen. Ophthalmologe 106:512–520CrossRefPubMedGoogle Scholar
  33. 33.
    Sporl E, Terai N, Haustein M et al (2009) Biomechanical condition of the cornea as a new indicator for pathological and structural changes. Ophthalmologe 106:512–520CrossRefPubMedGoogle Scholar
  34. 34.
    Steinberg J, Amirabadi NE, Frings A et al (2017) Keratoconus screening with dynamic biomechanical in vivo Scheimpflug analyses: a proof-of-concept study. J Refract Surg 33:773–778CrossRefPubMedGoogle Scholar
  35. 35.
    Tappeiner C, Perren B, Iliev ME et al (2008) Orbital fat atrophy in glaucoma patients treated with topical bimatoprost–can bimatoprost cause enophthalmos? Klin Monbl Augenheilkd 225:443–445CrossRefPubMedGoogle Scholar
  36. 36.
    Terai N, Raiskup F, Haustein M et al (2012) Identification of biomechanical properties of the cornea: the ocular response analyzer. Curr Eye Res 37:553–562CrossRefPubMedGoogle Scholar
  37. 37.
    Tian L, Wang D, Wu Y et al (2016) Corneal biomechanical characteristics measured by the CorVis Scheimpflug technology in eyes with primary open-angle glaucoma and normal eyes. Acta Ophthalmol 94:e317–e324CrossRefPubMedGoogle Scholar
  38. 38.
    Valbon BF, Ambrosio R Jr., Fontes BM et al (2013) Effects of age on corneal deformation by non-contact tonometry integrated with an ultra-high-speed (UHS) Scheimpflug camera. Arq Bras Oftalmol 76:229–232CrossRefPubMedGoogle Scholar
  39. 39.
    Vellara HR, Hart R, Gokul A et al (2017) In vivo ocular biomechanical compliance in thyroid eye disease. Br J Ophthalmol 101:1076–1079CrossRefPubMedGoogle Scholar
  40. 40.
    Vinciguerra R, Ambrosio R Jr., Elsheikh A et al (2016) Detection of keratoconus with a new biomechanical index. J Refract Surg 32:803–810CrossRefPubMedGoogle Scholar
  41. 41.
    Vinciguerra R, Ambrosio R Jr., Roberts CJ et al (2017) Biomechanical characterization of subclinical keratoconus without topographic or tomographic abnormalities. J Refract Surg 33:399–407CrossRefPubMedGoogle Scholar
  42. 42.
    Vinciguerra R, Elsheikh A, Roberts CJ et al (2016) Influence of pachymetry and intraocular pressure on dynamic corneal response parameters in healthy patients. J Refract Surg 32:550–561CrossRefPubMedGoogle Scholar
  43. 43.
    Wang J, Li Y, Jin Y et al (2015) Corneal biomechanical properties in myopic eyes measured by a dynamic Scheimpflug analyzer. J Ophthalmol.  https://doi.org/10.1155/2015/161869 CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Wang W, Du S, Zhang X (2015) Corneal deformation response in patients with primary open-angle glaucoma and in healthy subjects analyzed by Corvis ST. Invest Ophthalmol Vis Sci 56:5557–5565CrossRefPubMedGoogle Scholar
  45. 45.
    Wollensak G, Spoerl E, Seiler T (2003) Stress-strain measurements of human and porcine corneas after riboflavin-ultraviolet-A-induced cross-linking. J Cataract Refract Surg 29:1780–1785CrossRefPubMedGoogle Scholar
  46. 46.
    Wu N, Chen Y, Yu X et al (2016) Changes in corneal biomechanical properties after long-term topical prostaglandin therapy. PLoS ONE 11:e155527CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Ye C, Yu M, Lai G et al (2015) Variability of corneal deformation response in normal and keratoconic eyes. Optom Vis Sci 92:e149–e153CrossRefPubMedGoogle Scholar
  48. 48.
    Zong Y, Wu N, Fu Z et al (2017) Evaluation of corneal deformation parameters provided by the Corvis ST Tonometer after trabeculectomy. J Glaucoma 26:166–172CrossRefPubMedGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • R. Herber
    • 1
  • N. Terai
    • 1
  • K. R. Pillunat
    • 1
  • F. Raiskup
    • 1
  • L. E. Pillunat
    • 1
  • E. Spörl
    • 1
  1. 1.Universitätsklinikum Carl Gustav Carus an der Technischen Universität DresdenDresdenDeutschland

Personalised recommendations