Advertisement

Der Ophthalmologe

, Volume 116, Issue 1, pp 43–50 | Cite as

RPE-Morphometrie bei AMD-bedingter geografischer Atrophie

  • A. Wagner
  • A. Mohi
  • M. Ranjbar
  • S. Grisanti
  • M. RudolfEmail author
Originalien

Zusammenfassung

Hintergrund

Im Randbereich einer geografischen Atrophie (GA) zeigen sich deutliche RPE-Veränderungen, die mittels moderner hochauflösender Bildgebung immer noch schwer zu interpretieren sind. Deshalb haben wir degenerative RPE-Veränderungen in Histologien von GA-Augen kategorisiert, ausgemessen und analysiert.

Material und Methoden

Von 7 GA-Augen wurden jeweils 3 Schnitte/Auge lichtmikroskopisch untersucht und in Zonen unterschiedlicher RPE-Degenerationsgrade unterteilt (0 = normal, 1 = unregelmäßiges RPE, aber intakte Zellschicht, 2 = abgerundete, vergrößerte, aufgehäufte RPE-Zellen, 3 = in Retina migrierende RPE-Zellen, 4 = Atrophie). Pro Zone maßen und analysierten wir A) die Gesamthöhe der RPE-Zellschicht, B) die Höhe einzelner RPE-Zellen und C) die Höhe der basalen Ablagerungen.

Ergebnisse

Von der äußeren Makula zur zentralen RPE-Atrophie hin zeigte das RPE eine stetige Zunahme des Grades der pathologischen Veränderungen. A) Zone 2 zeigte die deutlichste Variabilität der Zellschichthöhe (16,9 ± 5,6 µm) mit hypertrophen, überlagerten RPE-Zellen neben bereits fortgeschritten atrophem RPE. Zone 0 und 1 zeigten dagegen geringe Variabilität und eine normale Schichthöhe (10,9 ± 2,6 µm). B) Die individuelle Zellgröße unterschied sich ebenfalls am deutlichsten in Zone 2 (12,4 ± 5,2 µm, min. 5,1, max. 27,5). Alle migrierenden RPE-Zellen waren hypertroph. C) In Zone 0 zeigten sich nur sporadisch wenig basale Ablagerungen. Diese nahmen jedoch mit dem Grad der RPE-Pathologie stetig zu und erreichten bis zum RPE-Atrophierand eine erhebliche Höhe (9,5 ± 4,3 µm).

Diskussion

Unsere Messergebnisse bestätigen, dass degenerative RPE-Phänomene, insbesondere vom Degenerationsgrad 2/3 nahe der eigentlichen RPE-Atrophiezone, groß genug sind, um bereits heute detailliert mit SD-OCT dargestellt werden zu können.

Schlüsselwörter

AMD Geografische Atrophie RPE Histologie OCT 

RPE morphometry in geographic atrophy due to AMD

Abstract

Background

The geographic atrophy (GA) junctional zone includes changes in retinal pigment epithelium (RPE) and Bruch’s membrane complex that are still difficult to interpret even with clinical high-resolution imaging technologies. We measured and evaluated degenerative RPE cell changes in histological sections of GA eyes.

Methods

In this study seven GA eyes were evaluated by light microscopy. In three eye sections, zones of typical RPE alterations were graded (0 = normal; 1 = irregular cells but intact layer; 2 = rounded, enlarged, and/or heaped cells; 3 = migrating cells in retina; 4 = RPE absent). In each graded zone, we measured and analyzed A) the total height of the RPE cell layer, B) the height of individual RPE cells and C) the height of basal deposits.

Results

From the outer macula towards the central RPE atrophic area the RPE passed almost steadily upward through grades of increased pathology. A) Zone 2 exhibited highly variable total RPE height (16.9 ± 5.6 µm) with hypertrophic and heaped cells next to atrophic ones. In comparison, zone 0 and zone 1 showed less variability and a regular total RPE height (10.9 ± 2.6 µm). B) In zone 2 the size of altered RPE cells varied widely (12.4 ± 5.2 µm, min. 5.1, max. 27.5). All detected migrating RPE cells were hypertrophic. C) In zone 0 basal deposits were found sporadically. With progressing RPE alterations, basal deposits became progressively continuous and thicker and reached a considerable height at the atrophic zone (9.5 ± 4.3 µm).

Conclusion

Our measurements confirmed that degenerative RPE phenomena, particularly of degeneration grade 2/3 close to the actual RPE atrophy zone, are often large enough to be visualized in detail with already available modern imaging technologies (e. g. SD-OCT).

Keywords

AMD Geographic atrophy RPE Histology OCT 

Notes

Einhaltung ethischer Richtlinien

Interessenkonflikt

A. Wagner, A. Mohi, M. Ranjbar, S. Grisanti und M. Rudolf geben an, dass kein Interessenkonflikt besteht.

Dieser Beitrag beinhaltet keine von den Autoren durchgeführten Studien an Menschen oder Tieren.

Literatur

  1. 1.
    Bahadorani S, Singer M (2017) Recent advances in the management and understanding of macular degeneration. F1000Res 6:519CrossRefGoogle Scholar
  2. 2.
    Holz FG, Steinberg JS, Gobel A, Fleckenstein M, Schmitz-Valckenberg S (2015) Fundus autofluorescence imaging in dry AMD: 2014 Jules Gonin lecture of the Retina Research Foundation. Graefes Arch Clin Exp Ophthalmol 253:7–16CrossRefGoogle Scholar
  3. 3.
    Holz FG, Strauss EC, Schmitz-Valckenberg S, van Lookeren Campagne M (2014) Geographic atrophy: clinical features and potential therapeutic approaches. Ophthalmology 121:1079–1091CrossRefGoogle Scholar
  4. 4.
    Fleckenstein M, Schmitz-Valckenberg S, Martens C et al (2010) Fundus autofluorescence and spectral domain optical coherence tomography characteristics in a rapidly progressing form of geographic atrophy. Invest Ophthalmol Vis Sci.  https://doi.org/10.1167/iovs.10-7021 CrossRefPubMedGoogle Scholar
  5. 5.
    Fleckenstein M, Charbel Issa P, Helb HM, Schmitz-Valckenberg S, Scholl HP, Holz FG (2008) Correlation of lines of increased autofluorescence in macular dystrophy and pigmented paravenous retinochoroidal atrophy by optical coherence tomography. Arch Ophthalmol 126:1461–1463CrossRefGoogle Scholar
  6. 6.
    Oishi M, Oishi A, Lindner M et al (2017) Structural changes in optical coherence tomography underlying spots of increased autofluorescence in the perilesional zone of geographic atrophy. Invest Ophthalmol Vis Sci 58:3303–3310CrossRefGoogle Scholar
  7. 7.
    Curcio CA, Zanzottera EC, Ach T, Balaratnasingam C, Freund KB (2017) Activated retinal pigment epithelium, an optical coherence tomography biomarker for progression in age-related macular degeneration. Invest Ophthalmol Vis Sci 58:BIO211–BIO226CrossRefGoogle Scholar
  8. 8.
    Balaratnasingam C, Messinger JD, Sloan KR, Yannuzzi LA, Freund KB, Curcio CA (2017) Histologic and optical coherence tomographic correlates in drusenoid pigment epithelium detachment in age-related macular degeneration. Ophthalmology 124:644–656CrossRefGoogle Scholar
  9. 9.
    Guidry C, Medeiros NE, Curcio CA (2002) Phenotypic variation of retinal pigment epithelium in age-related macular degeneration. Invest Ophthalmol Vis Sci 43:267–273PubMedGoogle Scholar
  10. 10.
    Vogt SD, Curcio CA, Wang L et al (2011) Retinal pigment epithelial expression of complement regulator CD46 is altered early in the course of geographic atrophy. Exp Eye Res 93:413–423CrossRefGoogle Scholar
  11. 11.
    Rudolf M, Vogt SD, Curcio CA et al (2013) Histologic basis of variations in retinal pigment epithelium autofluorescence in eyes with geographic atrophy. Ophthalmology 120:821–828CrossRefGoogle Scholar
  12. 12.
    Sarks JP, Sarks SH, Killingsworth MC (1988) Evolution of geographic atrophy of the retinal pigment epithelium. Eye 2(5):552–577CrossRefGoogle Scholar
  13. 13.
    Curcio CA, Millican CL (1999) Basal linear deposit and large drusen are specific for early age-related maculopathy. Arch Ophthalmol 117:329–339CrossRefGoogle Scholar
  14. 14.
    Folgar FA, Yuan EL, Farsiu S, Toth CA (2014) Lateral and axial measurement differences between spectral-domain optical coherence tomography systems. J Biomed Opt 19:16014CrossRefGoogle Scholar
  15. 15.
    Huttmann G, Lankenau E, Schulz-Wackerbarth C, Muller M, Steven P, Birngruber R (2009) Optical coherence tomography: from retina imaging to intraoperative use—a review. Klin Monbl Augenheilkd 226:958–964CrossRefGoogle Scholar
  16. 16.
    Sarks SH (1976) Ageing and degeneration in the macular region: a clinico-pathological study. Br J Ophthalmol 60:324–341CrossRefGoogle Scholar
  17. 17.
    Zanzottera EC, Messinger JD, Ach T, Smith RT, Freund KB, Curcio CA (2015) The project MACULA retinal pigment epithelium grading system for histology and optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci 56:3253–3268CrossRefGoogle Scholar
  18. 18.
    Zanzottera EC, Ach T, Huisingh C, Messinger JD, Spaide RF, Curcio CA (2016) Visualizing retinal pigment epithelium phenotypes in the transition to geographic atrophy in age-related macular degeneration. Retina 36(Suppl 1):S12–S25CrossRefGoogle Scholar
  19. 19.
    Sayegh RG, Simader C, Scheschy U et al (2011) A systematic comparison of spectral-domain optical coherence tomography and fundus autofluorescence in patients with geographic atrophy. Ophthalmology 118:1844–1851CrossRefGoogle Scholar
  20. 20.
    Zanzottera EC, Ach T, Huisingh C, Messinger JD, Freund KB, Curcio CA (2016) Visualizing retinal pigment epithelium phenotypes in the transition to atrophy in neovascular age-related macular degeneration. Retina 36(Suppl 1):S26–S39CrossRefGoogle Scholar
  21. 21.
    Zanzottera EC, Messinger JD, Ach T, Smith RT, Curcio CA (2015) Subducted and melanotic cells in advanced age-related macular degeneration are derived from retinal pigment epithelium. Invest Ophthalmol Vis Sci 56:3269–3278CrossRefGoogle Scholar
  22. 22.
    Ferrara D, Silver RE, Louzada RN, Novais EA, Collins GK, Seddon JM (2017) Optical coherence tomography features preceding the onset of advanced age-related macular degeneration. Invest Ophthalmol Vis Sci 58:3519–3529CrossRefGoogle Scholar
  23. 23.
    Framme C, Wolf S, Wolf-Schnurrbusch U (2010) Small dense particles in the retina observable by spectral-domain optical coherence tomography in age-related macular degeneration. Invest Ophthalmol Vis Sci 51:5965–5969CrossRefGoogle Scholar
  24. 24.
    Akagi-Kurashige Y, Tsujikawa A, Oishi A et al (2012) Relationship between retinal morphological findings and visual function in age-related macular degeneration. Graefes Arch Clin Exp Ophthalmol 250:1129–1136CrossRefGoogle Scholar
  25. 25.
    Staurenghi G, Sadda S, Chakravarthy U, Spaide RF (2014) International nomenclature for optical coherence tomography P. Proposed lexicon for anatomic landmarks in normal posterior segment spectral-domain optical coherence tomography: the IN*OCT consensus. Ophthalmology 121:1572–1578CrossRefGoogle Scholar

Copyright information

© Springer Medizin Verlag GmbH, ein Teil von Springer Nature 2018

Authors and Affiliations

  • A. Wagner
    • 1
  • A. Mohi
    • 1
  • M. Ranjbar
    • 1
  • S. Grisanti
    • 1
  • M. Rudolf
    • 1
    Email author
  1. 1.Universitätsaugenklinik Lübeck UKSHUniversität zu LübeckLübeckDeutschland

Personalised recommendations